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Unit II INTRODUCTION

1 1 What Is the Theor of Numbers?

The theory of numbers has been characterised variously by different

writers as: a descendant of Greek "arithmetica", number recreations and

puzzles which interest students of higher mathematics, the purest branch

of mathematics, the least applicable of all mathematics, one of the oldest

branches of mathematics, and the most difficult of all mathematical disci -

plines. It is all of these and none of these, depending on your vIct..7poirst

It is an offspring from Greek arithmetica yet today's number theory bears

little resenblance to the number worship of the ancient Greeks. The theory

of numbers is more than an idle pastime such as recreations and puzzles

might suggest. Whether or not the theory of numbers is considered the

most pure or least applicable of mathematics depends on whether you are

a number theorist or not. Number theory is certainly one of the oldest

branches of mathematics.

We cannot allow the last characterization of number theory to go

unqualified without immediately having the question raised, "Then why

expect elementary teachers to study number tb.enry? " It is not eslcpected

that elementary teachers study the type of number theory characterized

by "the most difficult of mathematical disciplines. " There are various

levels of sophistication in this field just as there are in algebra, geometry

and 'other fields of mathematics. This booklet will be such that any elementary
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teacher with a knowledge of arithmetic and an acquaintance with set language

will be able to follow the discussions,

We still have not answered the question, "What is number theory,"

Perhaps the best way to answer it is to study some and then reflect on the

question again. Explanations of unknown things have little meaning to a

person before that person has some experience with those unknown things.

We now proceed on that assumption, however, we remark that this branch

of mathematics confines itself to the properties of the set of integers--the

positive and negative whole numbers.

Why Should Teachers ']heart of lyumbers?L.s..
The most obvious answer to this question is that many topics from the

theory of numbers are finding their way into the school curriculum at all

levels. The emphasis in present day school mathematics is on understanding

alivlyi as well as knowing how and what. Most everyone can remember some

teacher who responded to "Why? °' questions with "That is just the way you

do it, don °t ask me 'Why? m Hopefully, such dogmatic teaching is rapidly

becoming a thing of the past. The elementary teacher should know the "why"

as well as the "how" and "what" so that he or she is able to lead students to

an understanding of the why. A good grasp of the fundamental. structure and

nature of mathematics is necessary for knowing why, and the theory of numbers

contributes to this understanding.
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Another reason for having elementary' teachers study number theory

in some depth is so that they will know more .than they expect their students

to learn. This knowledge will contribute to the teacher's confidence. This

confidence will in turn contribute to a healthier attitude toward mathematics

in the classroom, and the students will be benefited. If the teacher knows

more than his students, he will have insight into what' they are going to meet

in future mathematical studies and will realise the importance of what he

teaches now.

Number theory also !offers many interesting sidelights to matheinatics

which work nicely as enrichment materials. The history of mathematics

contains many interesting anecdotes abut number theory which can be used

for motivating students in ipathematics. Teachers with many of these

anecdotes in their repertoire are more effective as teachers of mathematics.

Finally, teachers cannot really appreciate the subject of mathematics

unless they have an opportunity to see as many facets of its as possible. They

should Pee the many relationships between and the common elements of the

various branches of mathematics. An appreciation of the structure of mathe-

matics stemming from this insight will be reflected ti more fruitful educational

experiences for mathematics students

1. 3. Why Should .Number Theor Be Studied in Elemental' School Mathematics/

Most of the number theory that is included in elementary texts today is

included in an incidental way. It is usually introduced in order that it may
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be used in working with some more traditional topics such as addition of

fractions. A section will generally not be devoted to the study of number.

theory alone, though there are some exceptions where topics in number

theory are included a3 enrichment material and are not used in any other

way.

It is unfortunate that more number theory is not included in the elemen-

tary school mathematics curriculum. It can add much to the understanding

that youngsters gain of the nature of mathematics and to their appreciation

of and attitude toward mathematics.

One problem facing all elementary teachers is how to get enough drill

and review in fundamentals into their teaching. There is always the danger

that drill will become meaningless and destroy initiative if students are

assigned page after page of problems to give them practice in fundamentals.

Number theory offers a nice solution to this dilemma. It is a good source

of "incidental" drill material which focuses attention not on drill but on

some interesting and new areas of mathematics. SOD using number theory,

the students can get the practice they need but in a painless manner. Also,

the theory of numbers provides some concrete applications of whole numbers

and students will be a.,.4e to apply their skills to discovering some new

properties of whole numbers.

Another ever present problem faced by elementary teachers is to

motivate students and to interest then in mathematics. , The necessity of
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developed of the nature of proof and its place in mathematics. The theory

of numbers is very fruitful in offering opportunities for students to develop

ideas ,of inductive and deductive reasoning. In fact, they can formulate

their own conjectures (guesses) about relationships between numbers, and

with practice make "proofs" of them. Some examples of this are shown later.

For teaching inductive and deductive methods of proof in the classroom,

there are some important points to be remembered. Whenever possible,

ideas about what is to be proved and how to do it should come from the

students They must be allowed to try and to err and to say what they

think. More mathematics is probably learned by working problems wrong

(and having them corrected) than by working problems correctly. :Creativity

should be encouraged and a student should not be stopped if he goes off on a

tangent that appears fruitful (and maybe some which do not). He will learn

something abc.at mathematics even if he goes up a blind alley.

Rigorous formal arguments cannot be expected from elementary

students. A mediocre proof by a student is much more valuable than an

elegant one done by the teacher However, a gross error should` not be

overlooked and allowed to multiply itself later. If the essential ideas are

presented by a student's "proof", then it should be accepted as correct.

The theory of numbers should give students some good ideas as to

how mathematicians work. In it they can experience discovery, intuition,

inductive' and deductive reasoning and formulating (and holding to) definitions

Also, one pitfall of mathematical reasoning can be shown vividly by topics



from number theory., This pitfall is the tendency a accepting a statenient

as true after checking it in only a few specific cases. Some examples of

this will.be shown later.

It has been suggested here that the theory of numbers offers some

promise as a fruitful topic to be included in the elementary curriculum'

You canna really judge the value of number theory until you know some-

thing abikat it. This is the purnose of theses trnitgr Yet"' will find that most

of the following topics are not new to you, but you will get a fresh look.at

them from another viewpoint. We now make some general comments about

what to expect in the following units and then proceed to the theory of numbers.

Y.4. What Is Assumed and What to 'Ex ect

Very little indication has been given yet of what numbers we-deal with

in the theory a numbers. In general, the field of number theory deals with

the set of integers. This includes the counting numbers, zero and the

negative integers. That is the set of integers is the set

.The three dots at each end means that this set-is ipfunte and that we imagine
1/2.

it continued on in the same fa.3hion in both directions.

In our work here we will be concerned with a subset of the set of integers.

We will speak only of the set of whole numbers. This includes the counting

O



numbers and zero. The set of Whole numbers, then, is

.{ 0 ,1 Z , 3 , . . . .

Note that it is also an infinite set. We will deal with various subsets of this

set; for example, the sets of even numbers, of odd numbers, of prime

numbers and of composite numbers. There is an important subset which

we will not have occasion to deal with but will mention in passing here.

This is the set of natural numbers

f a, 3 , .

CommOnly, this set is called the set of counting numbers as was done above.

This is a very important set for more formal studies of number theory than

we will do here.

A developmental approach will be used throughout the units. This is

done because it is probably the most fruitful. Also, it will give you an

example of the type of approach recommended often today for teaching

elementary school mathematics. Students are led to discover patterns and

generalizations rather than being told them. It is hoped (and it appears so)

that this leads to better understanding of mathematical concepts.

There are some assumptions made as to previous experience of the

reader. The basiC concepts and language of sets are assumed, Such terms

as subset, union of sets, intersection of sets and disjoint sets are used.

A knowledge of the basic principles governing the arithmetic operations is
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also assumed. These principles are: associativity, corntnutativity, closure

and the existence of identity elements for addition and multiplication, and the

fact that multiplication distributes over addition. These principles are not

necessary to the developmer.t but they are Mentioned whenever they are used.

necess ry to the development but they are mentioned whenever they are used.

Unit Z. PI RIMES AND FACTORS

2. b Evenness and Oddness

Of the many possible divisions of the whole numbers into sets, disjoint

or otherwise, we will first consider two, the set of even and the set of 'odd

n.umbers. When a child first encounter the theory of slumbers in elementary

arithmetic, it is probably in the study of some of the basic properties of

even and odd numbers. Historically, the study of even and odd numbers

was the source of what we today can the theory of numbers. The many

interesting properties of these numbers were studied by the Pythagoreans,

a mystical organization in ancient Greece devoted to the study of numbers.

Many of the ideas to be developed later in this unit were known by these

early mathematicians.

Many uses are made of odd and even numbers today which are not

familiar to many people. For example, odd and even numbers are wed

in numbering highways in the United States in such a way that north-south,

roads are named with odd numbers and east-west roads with even numbers.
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numbers. We have U. S. 40 fro east to Vieerr across the United States,

1-94 from Detroit to Chicago and 1-75 north-south. Most everyone is

familiar with the numbering of house's, the odd numbers on one side of

the street, the even on the other. A fact many may not know is that

airline companies use even aeel odd numbers to help prevent head-on

crashes betWeen airplanes. This is done by having the flights in one direc-

tion at odd numbered thousands (e.g., 17, 000) of feet of altitude and the

flight in the other at even numbered thousands of feet of altitude. Such

facts as these are interesting and should be good motivating devicei for

developing interest of students in mathematics. We now turn to the devel-

opment of some mathematical concepts associated with the sets of even

and odd numbers. Some questions in this area lead themselves very well

to discovery and creativity. Some such questions are about sums and

products of even and odd numbers. We shall consider this after general

developments about even.and odd number themselves.

Even Numbers
..wirmonanacselommlittelM2ab

If we were to pose the question to someone "What i8 an even number?"

the answer might range from, "It's counting trtwos, to You can divide

it by two, " to "It ends in 0 , 2 , 4 , 6, or 8" Such imprecise or vague notions

will not suffice for our worita.nd we shall attempt to develop more'grecise'

ideas. Consider the following:
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0 rx 2 z')
Z 2.21

4 = 2x2
6 fti sz 3

8 :2 Z x"4

Do you see, a pattern developing here? On the left we have the even numbers

and on the right other names for the numbers all shoving 2 x (some

whole number). Suppose we continue the list of 2 x (some whole riUmb.er),.

on the right:

Would we continue to get even numbers on the left? It appears so. Would

we get "all" of the even numbers on the left? The "definitions" given above

do not suffice to answer them.: questions in a direct LTA =ler and we must

formulate a more preciset, workable definition Suppose we define 'seven

number" in light of the pattern seen above.

Definition 1. An even number. is any number which is the product of the

number two and a whole number.

This fits the pattern observed before). It also agrees with Our imprecise

"definitions" given before. Does it agree' with your concept of "even number"?
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Suppose we agree to call this our official definition. It might appear that

the use of two in this definition is z:ather arbitrary. Why couldn't we

have .used 3 or 4 or some other number? Suppose we investigate a

pattern of products for other numbers as we did above for 2 and see

what happens.

3x0 .0 4x0 2 0 (x0.7. ri

3x1 22 3 4x1 2 4 6x1 2 6

3 x 2 2 6 4x2 - 8 6 x 2 12

3 x 3 2 9 4 x 3 12 6x3 4.2 18

3 x 4 2 12 4 x 4 2 16 6 x 4 24

Now if we tried to' define even nUmber in terms of 3 we would run into a
,

little difficulty since some' products of 3 are odd l. Suppose we throw out

the products that are odd. This leaves

3 x 0 0

3.'x2 2 6
3 x 4 a; 12.

Thought Exercise

All of the numbers listed avove are even What would be wrong with

defining. even number in terms of 3 using just these products? Would 'we

get all even numbers? Staying in the set of whole numbers, how could we

get 3 x (some whole number) rg 2 ? Or 4 ? Or 8 ?
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Suppose we consider 4 in the are way. You will note that the products

of 4 x (any whole number) are all even so at least we don't need to discard any.

Let's ask the same type of questions about 4 as we _did about. 34

Thought xercise:

Staying in the set of whole numbero W { 061,2}' s can we find

some number n such that 4 x n 4 7. ? 6 ? 10 ? Consider the products

of the form 6 x (some whole number) Could 6 be used to define even

number so that we could be assured that our definition inclined all whole

numbers? What about 2 ? 38 ?

Since it appears that use of 3 , 4, or 6 in a definition of even number

will'not give us all even numbers, maybe we ought to question Whether 2 does.

Thought Exercise:

Is . 2 x n always an even number whenever n E W (n; is an element of

the set of whole numbers)? Look at Definition I to help you answer.. Suppose

we ask the question: If m is an even number can we write m 2 tt

where n is some whole number? That is is every evennumber of the: form

2 st. n. ? This is really a question you need to answer for yourself in order for

our vefinition 1 to be sufficient to cover your previous isles. of an "even number";

and this will be left to you.

From now on let E represent the set of even numbers, i e o E

( 0 . 2 , 4 6, . gr
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Consider the pattern of products of 2 again.

0 %.=. 2.x0
2 El 2 1

4- = 2 x 2

E = 2 x 3'

Can we generalize this pattern to get an expression which always, represents

an even number? We have touched on this in a previous thought 4xercise.

Suppose we let n represent any whole number, i.e. , n c W . From the

pattern above and our definition of even number, can we say "? n is an even

number" ? A statement in symbols equivalent to Definition 1 would be

if n ie a whole number (n c W) then
2. x n is an even number (2 LI) a .

Before we turn our attention to the odd numbers, consider the following

exercises which will check your understAndia3 of the definition of even .

number.

Exercises:
IMINIWININIMONONIMIHENIENIO

1. Is each of the following numbers an even number-610, 324, 1024?

Now could you show whether each is or is not by ume of Definition 1 7

2. Again by use of Definition 1 can you show that 4 x where n e W ,

is an even number? What about E x m (m E W) ? 3( (k ac W) 2

3, Thou Can you show that 25 is not an even number by

use of Definition 1?
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Odd Numbers

Think about the following statement. "If we take an even number and add

one (1), we get an odd number. '' If we look-at some examples, 2 + 1 as 3 ,

6 + 1 g , 24 + 1 Et 25, it appears the statement is reasonable

Then suppose we centiliter the following pattern

0 + 1 (22c0)+12 M 1

2 + 1 1 3 ( X 1 ) + 1 3

4+1 q2x2)+1 3 5

o+ 1 - (Z3)+ 1 st

On the right we have each odd number and on the left each odd number.

written as an even number plus 1.

Do you notice a familiar term in each of these expressiens? We see

terms such as 2x0, x 1 , Zx2,. 2 x 3 , Remember we have

agreed to let 2 x n represent any even numbar. With this in mind, what

does (2 x n) + I represent? It obviously is an odd number.

So we can let (2 x n) + 1 represent any number which occurs in the

middle in our above listing of all numbers. Then in general

if n is a whole number (n G W) then (a x n) + 1 is an odd number.

Thought Exercise: Using the expression (2 x n) + 1 and substituting, one

at a time, all whole numbers, will we obtain every odd number? (Remember .
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the conclusion of the other thought exercises. ) Try to demonstrate this

by trying some numbers and see if you can arrive at a conclusion.

In trying to answer this exercise, did you feel Borne uneasiness about

lack of support for your answer ? U you did, this probably stems from

the fact that the set asked about, the set of odd numbers, can never be

completely written out. So by mere listing we could never prove anything

about this set. A more precise definition of odd numbers is probably

in order so we can think more intelligently about these numbers. In

the same manner as Definition I of even number, we define an odd

number as follows,

Definition Z. An odd number is any whole number which is one more

than the product of a whole lumber and the number two.

This, definition tells explicitly what an odd number is but if we are given

a number it doesn't tell us how to determine whether it is odd or note,

Suppose we consider even numbers again. 0, 2, 4, 6, C Iff we divide

each of these by 2 we get a remainder of 0, and 2 divides each "exactly".

(Actually this is the same as our earlier definition using the inverse

operation.) Thinking in this manner, what is the remainder when we

divide each odd number by 2 ? Suppose we base a definition of odd

number on this idea.
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Definition 3 . An odd number is a whole number which leaves a

remainder of 1 upon division by 2.

This definition is actually stating the same thing as Dainition 2 only, in

different words. Do you see a relationship between this definition and

the expression (2 x n) + 1 for an odd number ? What would we get if we

cVviled (2 x n) + 1 by 2 ?

Now., reconsider the previous "Thought Exercise". Can we now

answer this question more positively ? Does every odd number leave

a remainder of 1 on division by 2 ? Does (2 x n) + 1 leave a remainder

of 1 on division by 2 ?

Sums and Products of Odd and Even Numbers.111111...11.1111=11. vel...1..0.011

Suppose we pose some questions about sums and products.

1. Is the sum of two even cumbers always even, always odd, or

sometimes one and sometimes the other?

2. Is the product of two even numbers always even, alWays odd, or

sometimes one and sometimes the other?

3. Is the sum of two odd numbers always even, always odd, or

sometimes one and sometimes the other?

4. Is the product of two odd numbers always even, always odd, or

sometimes one and sometimes the other?



Let us seek an' answer to the first in the following manner.

1.) 0 4. 0 fr. 0

0 + 2 re 2

0 + 4 r-t 4

+

2+4µ
2 + 6

4

6

8

4

4

4

+ 4

+ 6

+ 8

..41

:11

8

10

12

Apparently the answer is "Yes". The key word here is "apparently".

We cannot be sure on the basis of the little inforthation we have accumulated

whether We are correct or not. We must be careful about basing con-

clusions in number theory (and in fact in all mathematics)' on inductive

reasoning (basing the conclusion on a few examples). Examples will be

given later where this type of reasoning leads to false conclusions. To

be very sure of our conclusion we must make a deductive argument as

follows.

Remember that we can represent any aver! number as 2 x (some whole

number). In Question 1, we have the sum of two even numbers. Suppose

we represent these by 2 x and 2 x m . (Why should we not use 2 x n

or both numbevs?) Their sum is re9resented by

(2 x n) + (2 x rr) .

By the distributive law We have

x (n + m) .

Now n and m are whole nurilbers (n e W and m e W) so what can we

say about n + m ? (This is using the clbsure property with respect to

addition.)



Thus 2 x (n + m) represents an even number since it is 2 x (some whole

number). And so (2 x n) + (2 x m) r4 2 x (n + m) =-= an even number

for any even numbers,2 x.n and 2 x m 0 Thus we can answer the first

question by. 'the sum of two even numbers is always an even number".

Let's consider the second question and try to provide it deductively,

Again we have two even numbers, 2m and 2n. Their product is (2 x zn) x

(2 7.4t: n). By the associative principle we have:

2ximx (2 x n)1.

is m x (2 x n)1 a whole number'? Could you prove it? So we have

(2 x sr) x (2 x n) 2 x (sorrse whole number) which is an even number.

Thus the answer to Question 2 is, "The product of two even numbers is an

even number.

Exercises: Using deductive methods, prove the following.

L Answer (and prove) question numbers 3 and 4 above. ( Remember

an odd number is represented by (2 x n) + 1 where n E W)0

2. The sum a an even number and an odd number is odd.

3. The product of an odd number and an even number is even.

4 The product of two odd numbers is odd,

The Sets of Even and Odd Numbers

Possibly avow that we know something more about even and odd numbers,

we should answer two questions that might have been brought to mind at
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the beginning of this unit. These questions are : Are the two sets E

and of even and odd numbers, respectively, disjoint, that is, do they

have any common elethents or not? Does their union make up the set of

whole numbers?

The answer to the second of these can be seen very easily by relying

on our intuitive ideas of even and odd numbers. The set of even numbers

contains zero and every second number thereafter and the set of odd

numbers contains 1 and every second number thereafter. Now think of

combining these two sets. The odd numbers fill in the "gaps" of the set

of even numbers and vice-versa, Remembering our general forms of even

and odd numbers we may argue as followe. E contains 2n, so it contains

2n + 2, 2n + 4,, 2n + 6 etc, (every second number thereafter). 0 contaims

2n + 1,, 2n + 3,, 2n + 5 etc. Do you see that the gap between 2n + 1 and

Zn + 3 is filled by 2n + 2? You should if we write 2n + 2 in the following

forms.

2n + 2 n + 1) + 1

Zn + 2 tg (2n + 3) - 1

We see that 2n + 2 is one more than 2n + 1 and one less than 2n + 30

So it is precisely the number which fills the "gap" between 2n + 1 and

Zn + 3

Do the following exercises to justify to yourself that we have indeed

shown that E 0 = W
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Exercises...mormirlinom

1. Show that Zn + 4 fills the ''gap"" between Zn %7 3 and Zn + 5.

2. Show that an + 7 fills the ' "gap "" between an + 6 and Zn + 8.

3. What numbers fill the following gape ? (Justify your answer. )

Between 2n + 9 and Zn + 11.

Between 2n + 16 and 2n + la.
Between Zn + 101 and Zn + 103.

The answer to the first question as to whether the sets are disjoint

can be answered by a type of argument common in mathematics. In this

type of argument, commonly called the indirect method of proof, we assume

the opposite of what it is we wish to prove and see where it leads us. U

this assumption leads to something false or contradictory, then we know

that the assumption is not true. /I the assumption is not true, then its

opposite must be true and this opposite is precisely what we wished to

prove at the beginning. We now proceed with the proof that the sets E

and 0 are disjoint. We begin by assuming that they are not, (in symbols

E n 0 0 ). This means that these sets must have at least one common

element. This is to say that there is some number that is both even and

odd. This may appear an impossible occurrence, but remember that we

wish to prove that this cannot hold and that the opposite statement holds,

namely that there is no number which is both even slid odd. Now we have

assumed that we have a number which is an element of both the two sets

E and 0 That this number is in E means it is of the form 2 x m, for

some in e W That this number is also in 0 means that it is of the form

(2 x n) + 1 for some n* W . Thus Z x m and (2 x n) + 1 represent the



same number and we can say

2 x m = (2 x n) I .

We now need to apply some algebra and get

(2 x m) - (2 x n) = 1 .

or by using the distributive principle,

2 x (m n) ez I .

Let's see what this says. If m is greater than n then m tl n is a

whole number. Then 2 x (m = n) is an even number. So the equation

above says 1 is an even number, an absurd statement. If n = rno then

n = 0 so 1 = 2 x 0 :3 O. again an absurd statement If n is greater

than xn® then an n is a inegative number so 2(trt o n) is negative. Thus

the equation says 1 is negative. So no matter what the relation between

m and n D the assumption we started with, namely that our original number

is. in both E and .00 cannot be. Thus there cannot be any number that is

both even and odd.

Thus we see that

EUO=W

and E n O_ 0 (E and 0 are disjoint).

We have had to reach out of our set W of whole ,numbers into the

negatirre integers in the above arguments. though at the beginning it was

stated that our work would be all in W. The theory of numbers actually

includes study of all the integers, positive, negative, and zero, so we



are not incorrect in using them; but we will not do so again.

2°2 Factors Divisors and Multiples

In the last section we noted and made use of the fact that there is

soinething which all even numbers have in common? Every even number

can be written ae 2 x (some whole number) or 2 x n where n e W We

can indicate this by saying "2 is a factor of every even number." Equivalently,

we can say. "2 is a divisor of every even nurnbet. " We should try to get

precise definitions of the terms "factor" and "divisor. " To do this, we

shall use the idea of "exact divisibility. °'

U we were to-ask a child in the middle elementary school what it means

to say one number divides another exactly be would probably know but

might not be able to verbalize it. For example, we know

Also

2 divides 4 exactly,
8 divides 32 exactly,

5 divides 75 exactly.

2 does not divide 17 exactly.

8 does not divide 9 exactly°

5 does not divide 25 exactly.

But now we should ask: &what criteria do we use to determine exact

divisibility? Probably we divide and check the remainder. More

precisely we could make a definition.
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Definition 4. Given an and n are whole numbers, we say m

divides n exactly if when n is divided by m the remainder is zero.

(We should of course exclude m e, 0 since we can never divide by zero. )

Another definition of dividing exactly which may be less workable at

the moment lout applicable later is possible. It is based on the idea

that if rn divides n exactly then there is a whole number which ie

the quotient. For example

2 divides 8 exactly because 8 2 x 4. (4 is the quotient)

5 divides 75 exactly because 75 tt 5 x 15, (15 is the quotient)

In general, then, we have a definition following this pattern.

Definitien 5. m divides n exactly if and only if there is a whole1.1MO

number k such that nemxk, (k is the quotient)

Now we can define factor and divisor.

Definition 6. if m and n are whole numbers, then in is a whole

number factor (divisor) of n if and only if m divides n exactly.MOM ../Meas

We must be careful to specify the kind of factors of which we are

speaking, En this unit we shall be concerned with only whole number

factors. It should not be thought that this is the only type. For example,

though 2 and 1 are factors of 2 so also are 1/2 and 4 since 1/2 x 4 2

and also are .3/8 and 6/3 since 4/8 x .16/3 :.2 and there are
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many more such factors. The distinction between these examples occurs

when we note that the first two are whole number factors and the last two

pairs of factors are rational (or fractional) factors; So it is necessary to

specify the kind of factors we are speaking of in a particular case and

this will be done throughout the unit.

A concept closely related to factors and divisors is that of multiples.

Consider the even numbers.

0.22x0
2 2.9 2 x 1

4 2 x 2

6 2 x 3

8 3 2 x4
O

xn

Examining this patterns, we note that we can say, "2 is a factor of

every even number." Equivalentlys, we can say "every even number is a

multiple of 2. " Notice that to get the multiples of 2 we can count by twos.

Suppose we investigate multiples of 3 based on our intuitive notions

of multiple,

Thought Exercise

List the first 6 multiples of 3 in increasing order. Is this like

"counting by threes"? Did you list zero? Is zero a multiple of 3?

Notice abcive that we said every even number is a multiple of 2 and
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we consider zero as an even number. Following this reasoning, zero is

a multiple of 2. Is it possible zero is also a multiple of 3? Perhaps we

should have a more precise definition of multiple than our intuitive notion

affords to enable us to answer such questions.

We have seen that in the case of the number 2 there is a close relation-

ship between factor and multiple. Suppose we investigate for such a

relationship for 3 and 4. The information is arranged in a table for

convenience.

SAI.CMINICACiliara=1,1!

Numbers of which a is a factor Reason

0
3

6

9

0 3 x 0

0 3 .2c I

6 fs 3 x 2

9 -3 5C 3

0 0 tt 4 x 0

4 4 4 x 1

8 8 4 x 2

12 12 4 x 3
0

Consider the numbers in the second column, Are the first four

numbers multiples of 3? Are the second four numbers multiples of 4?

Then the .:elationship between factor and multiple appears to hold for

numbers other than two. We utilize this in the following definition.



Definition 74 If m and n are whole numbers and m is a factor

of n, then n is a multiple of m.

An Equivalent definition of multiple related to Definition 5 of factor is

as follows.

Definition 8. If m and n are whole numbers, n is a multiple of m

if and only if n k x m for some whole number k

Working the following exerciese should help clarify the above ideas

and also point to later developments.

Exercises:

1. Make a list of the first 4 elements of the sets of multiples of each

of 5,6, and 7 Show each in the forma of the third column of the table

above. For example, 10 0 5 x 2, 18 6 x 3, etc, Remember that this

shows that 5, 60 or 7 are factors of these numbers and that these numbers

are multiples of 50 6 or 7.

20 Do you remember the generalization that was made of the pattern

which was seen for even numbers? We had

0 tl 2 x

ZZx1
4 28 2 x 2

6 x 3
0

C

This was generalized to the fact that every even number can be written
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as 2 x no What pattern do you see for 3, 4, 5, 6, and ? Can you write

a general element of the sets of multiples of these numbers?

3. Of what whole number is 6 a multiple? Is there more than one?

Show this. What numbers are factors of 6? Show this. Of what whole

number is 12 a multiple? Is there more than one? Show this. What

are the factors of 12?

4. Can you find a whole number which is a multiple of 20 5, and 7?

Show how you do it. What are the factors of this number? Make sure

you have them all.

5., Is zero a factor of any whole number? A multiple? Is any whole

number a factor of zero? A multiple?

6, Complete the following table.

n factor of n

1

2

3

4

5

6

7

8

9

10

0

lx 2 2

1 x 3 2 3

I x 4 4



What whole number appears to be a factor of every other whole number?

Can you generalize this for any whole number n ?

70 We can represent the set of multiples of a number many ways,

For example consider the set of multiples of 3. We can write

A .4 (0 3 6, 9© 12 , 0

We might also write the set of multiples of three by the following,

3n1 n is a whole number)

the § is read "such that")

(3n1 n

D tt set of all whole number multiples of 3.

Verify to your own satisfaction that A tr, B C D ; that is that each

of these sets contain exactly the same elements.

2, 3 Prialealt1 Composite Numbers

The concept of a prime number is one of the fundamental ideas of

number theory, Same of the most beautiftzl and profound theorems and

results in this field of mathematics are about prime numbers. Historically,

the study of prime numbers has been very fruitful to the field of number

theory. Tools have been developed in dealing with problems about primes

which have been extremely valuable in other areas, The Greek Pythagoreans

attributed magical powers to primes and much mysticism to their study*
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Today the mysteries and fascinations of prime numbers still intrigue

and occupy mathematicians. Some problems dealing with primes which

when stated are simple enough to be understood by elementary students

and yet they hn.ve defied solution for many centuries.

Before we get into precise developments about primes it might be

instructive to see how these concepts can be introduced to elementary

school children. The ideas of what prime numbers are can be introduced

concretely and easily to elementary school children by the use of sets

of blocks. If they are given sets of blocks containing different numbers

of blocks, say 4, 5, 6, 7, and 8, and they are asked to take each set and

divide up the blocks in that set into equal piles, they can be lead to a

basic understanding of prime numbers as well ac numbers which are

not prime. This can be accomplished ls follows: Suppose a child is

given a set of' 4 blocks. If he is asked to divide this set into a number

a piles (sets) each containing the sane number of blocks, he might

divide it into 2 piles (sets) of 2 blocks each° If another child is given

the sane task, he may divide the set into 4 sets each with one block.

In a classroom there will surely be students coming up With each

solution. This is the activity for which we are looking ( A precocious

student might suggest that one pile of 4 is an answer, though by the way

the task is described this would not be anticipate& ) Suppose we now

give the students another set of blocks containing 6 blocks and again

ask them to divide it into equal sets. Some may get three sets of 2

each, some two sets of 3 each and some six sets of 1 each.
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CEJ-17.1 ED)

Suppose we try a set of 8 blocks. Here we could get 2 sets of 4 each,,

4 sets of 2 each and 8 sets of 1 each.

Such results might lead to a conjecture from the students that if we take

any set of blocks there are many ways that we can divide it into equal

sets of blocks. It is not necessary that they make such guesses though

they should be asked questions about any patterns they might see. Now

let them try a set of five blocks. After trial and error, they will come

up with only one way of getting sets of an equal number of blocks. (They

should be encou.ragedlo try for more than one way since this is the

crucual point of the experiment.) (Again some precocious student may

suggest one pile of five blocks and say that there really is two ways



though when we get into prime numbers and factors we will see that

these are the same concept.' Now the students should be allowed to try

sets of blocks containing different numbers up to say 20. A table should

be kept of each of the different arrangements for each number as they

are found. After several numbers are tried then we can make some

kind of definition of prime number in relation to the number of ways we

can divide it into equal sets. It might take the form of ''a number is prime

if we can divide it up into equal sets in only one way (excluding the case

of only one set of all the blocks) '. After these ideas have been developed

then one could go into a more precise definition of prime such as we

will do in this section.

A variation of the above expirimental approach to primes would be

to ask the students to arrange the sets of blocks into a rectangular form

of so many rows with an equal number in each row. This is still dividing

the sets into a number of equal sets, but it may be more convincing and

concrete to the students to see the equal sets arranged neatly in rows.

For example, for 8 we might have

7.1 E:3 EJ "4
El El C7.1

L-1
4 x

x 8 [3 E3

8 x 1

O
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You will notice that the one set of 3 blocks is sure to mentioned here as

one row of 8 blocks so the definition of prime would have to allow two

ways of arranging the blocks into equal rows. There is no inconsistency

between these two approaches to primes but students might be confused

if both methods were use& We now proceed with more precise mathe-

matical developments about prime numbers. We shall begin our study

of these based on what we have learned previously about factors, divisors

and multiples.

Consider the table which you completed in Exercise 6 of the previous

section. It appears that every whole number except one (1) has at least

2 distinct factors. Your answer to the question in this exercise should

support this. For any whole number n ,

nrznxl.

Hence by our definition of factor, n and 1 are both factors of n

Notice also that there are some numbers which have more than two

factors, for example 4, 6, 8, 9, 100 (Remember the arrangements of

blocks?) These facts will lead to our definition of prime numbers.

Definition 9. A prime number is any whole number which has

exactly two distinct factors..

Thus from our list in Exercise 6 above, the primes less than 11 are

2, 3, 5, and Z.
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For a moment, we will consider the whole numbers which are not

prime. These we break up into two sets: those which do not have two

distinct number factors. and those with more than-two whole number

factors. Can you decide what numbers should be in the first set? It

is obvious that I must be in the first set if you ask yourself what two

whole numbers can be multiplied together 'to get 10 Only I x 1 1 so

1 does not have two distinct whole number factors. Are there any other

numbers in the first set? Remember that we said that any whole number,

n , other than one has at least two factors, 71 and n , So 1 is the 'only

number in the first set, In what set shall we place zero? If you Completed

the table in Exercise 6, Section 2. 2 correctly, you should see the
,

answer, Con ,ider the following,

0 r-4 0 X 0

0 1 X 0

0= 2x0
0r.3x0

0 g 4 x 0

O

n x 0 for any whole number

Hence every whole number is a factor of zero. How many such factors

are there? Could you ever count thein all? We indicate this by .saying

there is-an infinite number (this means more than we could .count) So

We Might say that zero is' in the last set but it will cause confusion to

include it in this set ao we generally put it in a set by itself. What we

are saying then is that ail whole numbers Other than 0, 2, and the primes

are in the second fiete, This set of numbers is called the set of Composite



numbers and we will denote the set by C o A definition is in order.

Definition 10. A composite number is any whole number which has

more than two distinct whole number factors. (This of course excludes

an infinite number of whole number factors. )

Another way of characterizing these numbers is by:

Definition 110 A composite number is any whole number other than
,.........4rmonsu..w

0 and 1 which is not prime.

We now have another decomposition of the net of whole numbers into

sets. if we denote the set of primes by P then we-have

W =P UCUMUMe

Actually these sets are also disjoint because a whole number has either

1, 2, more than 2 factors, or an infinite number of factors and this

places it in one and only one of the above sets, (Remember we said any,

whole number greater than 1 has at least 2 factors. ) This is an

application of a very important principle of mathematics called the
ti

Fundamental Theorem of Arithmetic. This will be discussed in Sec, 20 50

A question which first arises in, "How can we tell whether a number

is prime or composite?" The most obvious way to tell is to try to find

factors of it, This becomes increasingly difficult, if not impossible,

as numt)ors increase in size. For instance, it is relatively easy to



determine primes and composites less than 100, it is more difficult to

determine those between 100 and 1000 and almost impossible without the

use of a computor for very large numbers, An ingenious device for

determining primes was invented by Eratoethenes (c, 230 B, C, ) This

device is called a sieve and is constructed as follows,, We begin by

writing down the whole numbers in evlero

1000;40,13:0 eksj

1-6 ig #3/6

22 34 ag 21/ .3a 29) S.

)

We note the first prime, 2, circle it and cross out every second number

thereafter. (Remember the relationship between factors and counting by

a certain number?)) We note the first number not crossed out, 3, circle

it and cross out every third number thereafter, (Some may have already been

crossed out, ) Five is the nest number not crossed out, we circle it

and cross out every fifth number thereafter. And so on Note that

every circled number is a prime and each time the next prime is the

next number which has not been crossed out, Can you see why the circled

numbers are all the primes? Each crossed out number has factors

other than itself and I and each circled number does not. This sieve

of course becomes very unwieldy for large rumbers,, Other ways of

finding primes have been sought after. Men have searched for centuries

to find formulas for determining prime numbers, The best that have



-33.

been obtained are formulas which approximate or indicate the approximate

number of primes less than a certain number, What is meant by this is

best explained by some examples, Consider 10, The primes less that 10

are 2, 3, 5, and 7, . They are four in number. The primes less than 20

are 2, 3, 5, 7, 11, 13, 17, and 19, eight in number. Less than 30 we have

those less than 20 plus 23 and 29, ten in number and so on, Less than

100 there are 25 prime numbers, As we take successively larger numbers

there appears to be no connection between the size of the number and the

number of primes less than it except the larger the number the more primes

less than it The formula mentioned above h s been known since 1800 and

gives a rough approximation to the number of primes less thai any given

number We will not discuss this formula here as it involves ideas beyond

the scope of our work, It suffices to know that such exists. No formula

is known which gives eemetly the number of primes less than a given number,

Another question which arises is "How many primes are there?" We

seem to get an indieLltun to the answer by looking at the number of primes

in intervals between numbers, For example, between 1 and 100 there are

25 prime numbers including 2, 3, 5, 7, II; 13, 17, nand so on Between

100 and 200 there are 21 prime numbers and between 200 and 300 there

are 16, The table below gives the number of primes in intervals of 100

numbers up to 1000, if we continued this table on out to 100, 000 it 'would

be very evident that the numbers in each 100 number interval is getting

less,
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Numbers from 1 100 200 300 400 500 600 700 800 900

to 100 200 300 400 500 600 700 800 900 1000

Number of Primes
in the
Interval 25 21 16 16 17 14 16 14 15 14

This °°thinning out" might lead us to conjecture that there is a certain

number of primes and that after a certain point we would find no more

primes. As has been rlinted out before, conjecture based on a few

specific cases must be avoided in mathematics because this many times

leads to false conclusions, This is a very good example of this fact,

for it was proved by Euclid many centuries ago that the number of primes

is infinite, This is to say no matter how many primes are found, there

will always be more., The proof of this theorem is very simple and can

be found in the appendix for any who wish to follow it through,. Many

large primes have been found and tables of primes have been constructed

up to 10,000,000, In 1961, the largest verified prime was 23217.1 , a

number which, when written in usual form contains 969 digits.

The following exercise which may as" some of the many interesting
which may

questions be raised about the relationship between the sets E and 0

of even and odd numbers and the sets P and C of prime and composite

numbers.,

Thought Exercise What are the relationships between the set E

and the set P ? Are there any even numbers that are prime, en what is
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E P ? What about EA C Of) C, and OA P ?

Don't be concerned if you can't answer exactly; just think about these

and try to indicate what each set would be,

2,, 4 actorization
-,.-awam......www*Mbrommeimall.,111.r.

We have seen that all whole numbers greater than I have two or more

distinct factors and we have indicated this by showing these numbers as

a product of two whole numbers. For example,

2~ 2 x 1
4;g2x2.-4x1
9.13x3g..-9x1.

This process is very important in mathematics and has been given

a name, Whenever we show a number as the product of two or more

factors, we ay vie have "factored" the number.. The process we call
1.n..WMEMO

"factoring'', The representation of a number as the product of two or

more factore, we call a "iactorization" of the number, For example,

if we "factor" 8, we get

8.2x40.

8 has been "factored" into 2 x 4 which is a ''factorization'' of 8, Notice

we say "a" factorization of 8. Are there other factorizations of 8? Of

course, 8 8 x 1. Also, 8 2-= 2 x 2 x 2, So there are at least three

factorizations of 8. Are there more? What shall we say about 8 1 x 8



and 8 e 4 x 2? It is conventional to tall 8 x 1 and 1 x 8 the same

factorization of 8,, Also 4 x 2 and 2 4 are the same factorization of

8 (What principle of arithmetic is being applied here ?)) Shall we now

say that 8. has only three factorizations: 4 x 2, 8 x 1 and 2 x 2 x 2?

What about (1/2) x (16), (3/4) x(32/3), and (.2) x (.4)? Are these not

factorizations of 8? We must be careful to specify what set of numbers

vie are using as factors or what Get of numbers we are factoring over,

We call this set the "domain of factorization', Thus if we ask, "Vihat

are the factorizations of 8 if the domain of factorization is the whole

numbers ?" then we can answer the above questions definitely, The

only factorization in this caee are 4 x 2, 8 x 1, and 2 x 2 x 2

The following exercises will help acquaint you with these terms°

Exercises: (The domain of factorization is the set of whole numbers):
.a.....1.1.1111100011/116

lo Find all factorizations of 16r. What are the factors of 16?

2. Find all factorizations of 4,. What a.re the factors of 4?

Do you see a relationship between the factorizations of 4 and 16?

what is it?

4, Consider the following:

8 e 8x1,, 8 ze 8 xlxl, 8 e8 xlx1 elx 00

Does this suggest some further modification or clarification of the term

"factoring"?



2, 5 Prime Factorization

Consider the following factorizations of composite numbers 1 to 200

4= 2 x2 -47,1x 4

6 2 x 3 1 x 6

8 f. 2 x x 2 2 7,c 4 =-4, 1 x 8

9 3 x 3 t=:: 1 x9
10 2 x 5 2 1. X 10

12 tlt 2 x2 x3 2 x 6 3 x 4 '1,x12
14.z 2 x7 1x14
15 3 x5 ,t-tlx15
16 .2 x2 x2 x2 ft.; 2x t3 41. It 4 zlx16

1ST 2 x 3 x 3 2x; 9 3 x 6 .v 1 x 18

20 ma x 2 x 5 2:1.0 4 w. 5 1 x 20

What do you notice about the factors in the first factorization in each

case? Are these factors prime or composite? Et appears that each

composite number has a factorization in which all factors are primer

We wish to single this factorization out to he used in further develop-

ments so we call this the prime factorization of a number° Notice we
VT. ft.I.314 WONNOIMIN

can say the prime factorization because we have agreed to call factor-

lzations such as 2 x 5 and 5 x 2, 2 x 3 x 3 and 3 x 3C 3 the same

factorizations of 10 and 18 respectively0 Also in saying the prime

factorization we are applying a very important theorem which is bask

to many branches of mathematics. This is the



Fundamental Theorem of Arithmetic (also called the Unique
Factorization Theorerx*, Any composite whole number other than 0
and I can be factored into primes in one and only one way, except
possibly for the order in which the factors occur°

This means that if we factor a whole number a by a x b x d where

these are prime then any other factorization of n into primes must

have the same prime factors, a b Cr, and d possibly in some: other

order; It may appear that this theorem is a very simple result and is

obvious° It is also very important as there are some mathematical

systems in which unique prime factorization does not hold, though we

do not encounter any in the elementary school prograyn The proof

of this theorem is relatively simple but it would not suit our purposes

to present it here, For the interested student a proof may be found

in any theory of numbers text°

Students often encounter difficulty in finding the prime factorization

of numbers° A device helpful in this is called a factor tree and is

illustrated by steps as follows Suppose we wish to factor 84° We

might notice that 6 will divide 84.. So we factor 84 using 6 as one

factor,

84

6 x 14

Then we find factors of 6 and 14,

84

6 x 14A N,
2 x 3 2 x 7



Notice that we have continued until we have all prime numbers as factors°

So 84-2x3x2x7

We could also have proceeded by noticing first that 4 is a factor°

The factor tree thus obtained is

4 x 21

A N
2 x 2 3 x 7

So 84t72x2x3x7

Also 84

7 x 12,

7 x3 x4

7x3x2,x2

So 84E-:-7x3x2,x2,

Notice that no matter which tree we use, we get the same factorization

into primes except for order. This is an evidence of the Fundamental

Theorem of Arithmetic0

The factor tree is a very concrete and graphic method for illustrating

to students the meaning of factorization. Sometimes this method of

factoring is not easy to initiate, especially with large numbers° There

is a more systematic way of factoring a number. This is illustrated by

the following example.



Again let us factor 84,, We begin with thc,,, smalRest prime, 2 and

see whether or not it is a fnctos: of 84, We see that it is and write

84 t- 2 x 42,

We now try to factor 42 and we again try the smallest prime 2., It is

a factor so we write

84 x2 x21.

If we try 2 again we see it is not a factor of 21 so we try the next prime,

3, and we get

84-1; 2 x 2 x

At this stage all the factors are prime so we are done, (Note again the

illustration of the Fund,aariental Theorem

As another illustration, ,..,.appose we factor 630° Again we try

consecutive primes 2 3,5,7, etc. Remember each may be a factor

more than once.

630 2 x 315

2 x 3 x105

2 x 3 x 3 x 35
2x3x3x5x 7,,

Actually, with this method we are trying each consecutive prime as a

divisor of the composite number For this reason we may call it the
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consecutive prime method., We can carry out this process then as a

continued division by consecutive primes,

7
5

3 1/70-1

3 fir,51-

2 30 So 630.1-tEx3x3x5x7.

In illustrating this to students, one should probably not go from the

original discussion to the final algorithm form too quicklyo The

student should understand the reabons why the method works and the

reason for each step before he makes a mechanical operation (the

repeated division algorithm of it.

We will apply prime factorization throughout the remainder of this

booklet and the reader should he familiar with it before proceeding.

The following exercises will help in this respect,

Exercises: The domain of factoring is the set of whole numberso

Find the prime factorization of the la flowing xxumbers by two methods.

ao 32
b. 18

c, 38
do 16
e, 36
fo 272
g- 45
h0 25
io 700
jo 75



Exponential notation,, We sometimes use a shorthand notation in

factoring into primes° To indicate the number of times any prime is

a factor in the factorization, we use an exponent, Consider the following.

45 3 x 3 x 5

This can be 1.vritten as

45 32 x 5

`The 2 is called an exponent and indicates the numbex of factors of 3

in the tactorization.. The 3 which is the factor is called the base

Note You must be precise in speaking of this A common error by

students is to say the exponent indicates the number of times you

multiply 3 by itself. This is very confusing and incorrect as the follow=

ing example shows,

Does 35tr., 3x3x3x3x3x3
or 35-3x3x3x3x3 ?

in the first case, we have multiplied by 3 by itself five times and in the

second case 3 is a factor five times. So we must be precise in our

terminology and say th, exponent indicates the number of times the base

is used as a factor,., f(f a number is a factor just once, then we use I as

the exponent. The writing of the I in this case is optional and the base

can be written without any exponent. Thus 32 x 51 x 71 =t, 32 x 5 x
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2, Write each of the prime factorizations in Exercise I using the

exponential notation.

3. What relationship do you see between the prime factorizations

of 32 and 16? 18 and 36? 25 and 75?

4. Using each of the two methods given in this section find the

prime factorization of 256 Of 425, Of 10,422, (indicate these in

exponential notationD,

Unit 3 GREATEST COMMON

DIVISOR AND LEAST COMMON MULTIPLE

3,1 Introduction

We are all familiar with the procestm3 involved in the following

exercises.

3

8

15
75

5
+

12
e

24
.1

10
...in..

24
19

We are also familiar with the difficulties encountered by many students

in developing and retaining skill in carrying out these processes. The

modern approach to teaching mathematics emphasizes understanding to

show how the theory of numbers contributes to this understanding in the



above processes. First, we develop further some ideas which have

previously been touched on and which will be useful in the following

sections. These ideas deal with the divisibility of a whole number by

a counting number.,

3, 2 The "Divides" Relation

En Definition 2, Section 2, 2, we defined a relation involving division

which can exist between two whole numbers. We repeat the difinition

here for easy reference.

m z W and n t W (m e O))e then m divides n exactly if and
only if there is a whole number k such that nemz k.

We will drop the word "exactly" as it is mathematically correct to say

"'m divides n"., He:b.-eatter we will uze a symbol to represent "divides".

'MU le the verticel mark Thus we will replace n "divides" n by

m n Our definition is then

If m c W (ray Y Cn and n , then ric31 n if and only if there

is k W such that n

The properties of this relation are interesting and are easily understood

when presented in a developmental rnan.ner Suppose we first do some

investigation with particular nu gibers

The subscript, a device used continually in mathematics writing, is

used here. What the subscript .means is that the same letter with

different subscripts represents different numbers., For example, kji



and k
2

are used to represent values of k in the definition above which

arise in different situations k
I

might arise in the first example and k

in the second, The subscript is merely a tag to help us remember that

k
1

and k
2

are values of k which have come about in two different

instances. We are not saying by the use of the subscript that these two

values of k could not be the same, i,. e we are not saying k
1

k
2

These can be equal, We are merely distinguishing between them for the

discussion,

We know that 41 8 since 8 4 x 2, (k 4
Also 8124 since 24 8 x 3, (k

2
3).

Does the relationship hold between 24 and 4 ? Yes,, because

24n 4 x 6, (k3 e 6D,

Do you notice anything about the difference values of k ? Suppose we

try another set of numbers, We know that

7 [28 since 28 7 x 4, (ki

and 28[280 since 280 28 x 10, (k2 LO).,

Now, does 7 f 2F30? Yes, because

280 tg, 7 N. 40, (k3 40),

Notice the k"s again. Suppose we generalize this into a statement (called
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a conjecture)) and see if we can prove it,

If a, b and c are whole numbers and a [ b and blc , then ale

Let"s analyze the above examples to see if we can discover a pattern

which will lead to a proof of this statement for all whole numbers,

We say 7!28 since 28 Analogously, can we say

a b means b lz a x kl , where ki is some whole number ?

Remember alb means there is a whole number k such that btax k

We use k
1

to eliminate confusion with other values of k which follow.

Now we also said 281280 since 280 28 x 10 Let's carry the

abalogy out with b and c,

131 c means c x k

Now we have the two equations

b axk1

corresponding to

Hopefully we can get

and 2, c b x k
2

28 7 x 4 and 4.. 280 tT. 28 x 10

c .5 a x k, where k is some whole number

because from this we get a ic Notice that Equation 4 may be written

280 (7 x ,04 x I.CL Similarly, may we write

c (a x k1)) x k
2

7
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Essentially, we are substituting a xkl in place of b in equation 2 above

which we may do since they name the same number- Now by the associative

principle, we have

ceax (k1 x k 2)

and by closure,

k
1

x k is a whole number,, lets call it k, that is let k k
1

x k

Thus we have

caxk

where k is a whole number, (k k
1

r. k2 )) Do you see the analogy to the

above examples for the k's?) Thus a: c, so our conjecture has proved to

be correct, (We may now call this a theorem, )

Let's try our hand at formulating another conjetture and proving it by

considering numerical examples, Consider 4, 8, and 20,

We know

4[8 since 8 --- 4 x 2 (k
1

2) and

4120 since 20 4 x 5 (kz 5))

Suppose we see if 4 divides the sum of these two numbers, that is, does

41020 +8)
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20+8 ft 28

and yes 28 4 x ,

Is this mere chance? Or is there a reason? Let's see if we can discover

a reason for this.,

Now 282O+84x2))+4x5))

What principle of arithmetic can we use to show that 4 divides the

right side of this equation, that is to show that

(4 x 2) + ( 4 x5)),;-: 4 xk

for some whole number k ?

The distributive principle tells us that

( 4 x ( 4 x 4 x ( 2 +

Hence we have

28 ;.? 20 + 3 (4 2) ( 4 x 5 4 n ) 4 x 7, or 28 tt 4 x k3

where k
3

7

Thus 4 28

(Note the relationship between the values of k: 2, 5 and 7, )

Consider another example , 3, 27 and 18
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3127 since 27u3x9

3118 since 18 3 x 6

Does 3 divide the sum of 18 and 27? 18 + 27 458 and yes it does, Let's

see why.

45 27 + 18 3 x 9)) + (3 x 6) -z, 3 x (9 '146 6)) 3 x15,

Hence 3 45 since 45 3 x15.

Lt's formulate a conjecture based on what we have observed above. We

have had in each case one number which divides each of two other numbers.

We have seen then that the first number divides the sum of the other two,

Let's write this in symbols.

If a b and a c then al b + c)

Following the pattern observed above let's attempt a general proof.

We have ab and a c,

From this, we have by one definition of what divides means

-b a x k
1.

and c =: a x k
2

Now b + c (a x + (a x kz) 0

Using the distributive principle

b + c r9 (a x k 1) + (a k
2)

a x (k
I

k
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Thus b+ceax (k1+k2
)eax le, where k e W and k k1 +k2

Hence a fl (b + c) and the conjecture is proved,.

These examples illustrate the value of number theory as a vehicle for

teaching ideas of proof to children, The numbers dealt with are the

simplest ones and no complicated ideas of logic are involved, Also', the

proofs themselves are very easily arrived at by searching for patterns:.

The following exercises will give you some practice in constructing such

proofsn

Exercises: Following this procedure of building patterns from specific

numbers prove the following conjectures.

L If a ; b then a[(b x c) where c is any whole number,

2. If a (13 + c) and a b, then al c

3, If a b and all c, then al (b cl)., To keep in the set of whole

numbers, assume that b is greater than

Division Algorithm

All students of arithmetic become, acquainted with a much more general

idea of division than the above presented one, There are relatively few

"divisions" which "come out exactly" or which leave zero remainders

(such as the above discussion centers on), Most divisions as experience

shows, leave a remainder, We shall now consider a general principle of

division which includes, of special case, "exact divieon", Without

this general principle, division, or the process we use to carry it out

would be impossible, To lead up to this general principle, it us again

consider specific numbers,



We know that given two numbers, say 8 and 28, we can carry out a

process called division on these numbeeee, Cr g, 28-e- 8., We are also

familiar with the method used, We first seek a multiple of 8 which is

less than 28,

3
8 FTC

e 3 x
4 =28 - (3 x 8)

Note that this says that 28 x (3 x 8) + 4. Do you see a similarity to the

way we "check" division problegris? The answer we obtain has been called

by many names, the most prevalent today being "quotient", If the division

is not exact, then we have a number "left over" which we call the "remainder"A

Probably everyone would agree that no matter what two numbers had been

chosen, such statements as those above could be made and that the operations

could have been carried outs It would be a sad state of affairs if this were

not the case. Very few people, though, know the justification for these

statements and this operat:ion This justification is given by the following

general principle, now stated,

The Division /Algorithm: For any given whole numbers a and b with

b e!, 0 there are unique whole numbers q and r such that a e (q x14 r

and r is less than b

Some illustrations of this might make the meaning of it clear' Consider

42 and 9., We can say



42 (4 x 9) + 6

alto, 9 (0 x 42) + 9

so we need not worry about which number we write as a and which as b

to write it in the form of a v (q b) r, . Consider two more numbers, say

20 and 225, We can write

225 x 20) 5

or 25 n, (0 x 225) + 25

Now let's analyze ';he statement of the Division Algorithm referring to

a specific example given previously- We have two whole numbers a and b,

b 0 (Why?) just as we had 42 and 9 before, The Algorithm says that

there are then two whole numbrs, q and r ( 4 and 6) which are always

the same for the given a and b such that q is the quotient and r is

the remainder when we divide a by b,. Thus the Algorithm justifies the

whole process of division and we are assured that, given any two whole num-

bers, we can divide one by the other (except by zero) and get an answer

which will be the same for those two numbers every time we ,do this

division

The statement was made previously 14;hat the general Division Algorithm

contained "exact division" as a special case. This is illustrated by

letting r 0, Then we have that

ays(q X b) + 0 qxb

So bla



There is a small point of confusion which may develop here and should

be pointed out. Sometimes the process which we carry out in division is

called the "division algorithm": This means that we have a certain

eequence of operations,, closely related to the above Division .A1,gorithm,

which we memorize and carry out on numbers and which lead to a desired

result, En this unit the word "division" will refer to these operations and

the words Division Algorithm to the general mathematical principle

E,cerciseso Analyze each of the following divisions to show the

application of the Division Algorithm, (Write as a e bq r for some

whole numbers a,, bo q and r as in the Division Algorithm,})

1, 98 4- 12 rt 6 r 2

2 125 4 25 .4" 5

3, 49 9 r 4

3. 3 Least Common. Multiple

We have previously defined multiple. However, for reference, we

restate this definition:

m is a whole number multiple of n if there is a whole number
k such that m k x n

Let us consider some whole number multiples of two numbers, say 8

and 12, Let E be a set of multiples of 8 and T be a set of multiples of 12.

8 16, 24, 32, 40, 48)

{ 12, 24, 36, 48)
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Notice E and T are not the sets of all

Also notice we do not list zero though

the situation we have now zero as a

would only cause confusion What

One thing we can readily note is

EAT A16, and in fa

E fl T 4, 48}

This means 24 and 48 are

we say 24 and 43 are c

common multiples of

you should see a pat

common multiples

Let's write a fe

24,

multiples of 8 and 12 respectively,

it is a multiple of every number., In

multiple is of no value to us and

do you notice about these two sets?

that they are not disjoint, i en

ct

multiples of both 8 and 12 and to indicate this

mraon multiples of 8 and 12, Are these the only

8 and 12? Try to think of some more, En doing this

tern related to some earlier work, Are all the

of 8 and 12 a multiple of some number besides 8 and 12?

to see,

48, 72, 969 120,

We can rewrite these as

Can w

app

is

1 x 24, 2 x 24, 3 r24, 4 x 24, 5 x 24 (.,

e generalize to say n x 24 is a common multiple of 8 and 12? It

ears so, Later we will see that this is the case. It appears that 24

a special common multiple of 8 and 12. It is the smallest one and it

is a factor of all the other common multiples of 8 and 12. Such a number

we distinguish by calling it the least common multiple, We record a

definition for easy reference,



a .kZ
7:1! Vol;1C T which is a multiple of two

wh,olv; !no' a.r.r.:.allest such obe.:

called th l&tt iort 1.1"./.1-'7;1 `lot k:t. that th numbe. r

he levst -.aum.-.1aT' in tl`,C' !T.Cte ot ;the ;$:;t'f.,,J rk-rdtiple:1 W.: inn and

What 0 Ct1 'TO ".11. ^7! c.:;rarr ,r.,-,..r.211,11i)e, he 'eoftor

abbrevie.I.A I 2 qi vc nu. 1 `g tliot 2;4 is the 1. c,

of 3 and '2 anc tat co rl' i3 and 12 a rotatiple of' Z4

R emornber and factor can't w' also

y that 34 1.8 a lartr..r r:4111t,i.p l.q.. of i3 and 1Z? Do you

,c7.4T:p1)0 Se, S u ter, 4.

'Tile set cl

C5., 'I "J; . 5.

TL set r.,1 3.rtvj

sr.ori.:;;Idc!r another ,?xarnple

'0 22, 24. 26,, 30

Me set 4:-.1t c.ornrr; at..,..(.1

c. 'at),

So 10 is the 1. 47... .n.)L., of 5 an' 2. It kr ai,e,,o /a .)74' 'of ih rutipi of

5 and Z.

Kt appears then that th .r. c' two nuriabrt: is a factor of every

r:ommon multiple of these ..wo numbe.rs,

11.



Thou gLit exercises Prove the conjecture that if x is the L c, m of a

and b then x is a factor of every common multiple of a and br

Naw the que tion ari es an to how to find the 1, c, m, a two given

numbers without listing sets of multiples of each and finding the inter-

section of these sets, . Suppose we look at the sets of multiples of 8 and

12 (leaving out zer0

E 8, 16 24, 32 40 4$,

T 12, 24 36,, 48

Remembering earlier developments we can generalize elements of each

of these sets to

an element of E is of the form 3 x n for n a W and

an element of T is of the form 12 x m for m 4 W0

Let's rewrite these in factored form as 8 x n 2 x 2 x 2 x n and

12 xma2x2x3x m, Now by examination we can see that any

multiple of 8 must have 2 as a factor 3 times, Also we can see that

any multiple of 12 must have 2 as a factor twice and 3 as a factor once

We are really describing the elements of the two sets E and T with

these statements, We are saying that each element of E must have 2

as a factor 3 times and that each element of T must have 2 as a factor

twice and 3 as a factor once, Row then can, we describe the common

multiples of 3 and 12, that is, the elements of the intersection of the
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sett E and T ? How many factors of 2 must there be in a common multiple?

Are 3 factors of 2 sufficient? How many factors of 3 must there be? Es

one sufficient? Suppose we consider numbers with three factors of 2 and one

factor of 3© that is, numbers of the form

2x2x2x3xk for kt W.

Notice that this is

23x3xkle24xk.

This is a multiple of 8 since 24 x k e X (3 x k) and it is also a multiple

of 12 since 24 x k 12 x ( 2 x k). Hence we have a general representation

for common multiples of 8 and 12, that is,

E { x0x e 24 x k for lc W

We find the 1 corn, by letting k 1 since 24 x k represents all common

multiples and the smallest of these is when k L (Remember we are not

considering zero.)

The method which we used above of finding the L of two numbers

can be summarized as follows,

Suppose we wish to find the L co m, of 24 and 23.

L Write the prime factorization of each number. 24 23 x 3 and

28 e, x



2, For a multiple of 24 we need three factors of 2 and one of 3,

For a multiple of 28 we need two factors of 2 and one of 7,

3, Decide how many times each prime must be a factor of the number

which hi to be a common multiple_

For a common multiple we must have

2 as a factor at least 3 times because 23 is a factor of 21t

3 as a factor at least I time because 31 is a factor of 24

7 as a factor at least I time because 71 is a lactor of 28

So all common multiples are of the form

23x 3 x7 xk for ka W.

To demonstrate that every number of this form is a common multiple of

each of 24 and 28 -wwe can rite 2,
3x3x7xk= (2 3 x33)) x 7 x lc= (24) x (7 x

and 2 x 3 x 7 = (22
x 7)) 2x 3 x k (28)x(3,x14. So the number is

a common multiple of 24 and 26.

To find the 1, c, ma° we let k te, 1,

2
3 x 3 x7 xl -ze 2 3 x 3 x =168,

This method can be abbreviated but this should not be done until students

fully understand the reasons behind it,

Exercises:

10 Find the 1, co m. of 9 and 15, of 40 and 20, of 60 and 225.

2. Find the 1. c m. of 20 50 and 6, This is merely an extension of

the method given above
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3e In fii6.44ng the L c. m. of 8 :5, 23 and 12 22 z 3, we took 2 as a

factor only 3 timet,,and 3 as a factor once. Can you explain why we

do this instead of 2 as 61%factor 5 times and 3 as a factor once?

Least Common Denominatorouvraw{.4.1r...11.+41.0.......11.II....114./..

The main application of the L c. Yap in arithmetic is in finding the

least common denominator, 1, c. d of two rational numbers for purposes

of combining theme For example, consider tip problem with which we

3 5started this unit:
8 12

We know that before w can combine these

rational numbers we must change their representations to quivalent

fractions whilch have the same denominators, that is, we must fi ,d1 a

common denominator and convert those fractions into fractions with at

denominator. For convenience we look, for the least common denominator
411111141.171111111M

which happens to be the 10 ce me of the denominators of the two rational

numbers we swish to combine. We have found that the le c4 me of 8 and 12

is 24e This is why we convert as follows:

So

9 1

24 and 12 P.

9 10
2 i 144:

19
24

Ef we would use another common multiple of 8 and 12 say 48 we would have
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3

8

18-
48

an 5--
1Z

20
48

5 18 20
Ta. + 48

I, an answer not in lowest terms,

This process is not wrong, and if a child can understand and use it, even

if he has trouble with Ithe I. c, d. process, he hae a useful skill. However

the result -8 is not in simplest form It would probably require another

step to this problei which would not be needed. in the case where we use

the L c. instead of just some common multiple Speaking of a fraction in

lowest terms teads us into the next topic, the greatest common divisor of

two number s,which is closely related to the 1, c, m.,

3n 4 Greatest Common Divisor

In the second of the problems vrhich introduced this unit we reduce the
15fraction to lowest terms
75 5

In doing so, we divided out the greatest

common divisor (or factor), g. c.. d, , of 15 and 75. We shall be concerned

here in showing exactly what the g. c, d of two numbers is and three methods

of determining it.

First, let's consider what the g, c. d< of two numbers, say 72 and 90

might be. First of all, it will be a divisor so let's list the sets of divisors

of 72 and 90, call these S and N resp ctively.

S w f` 1, 2,, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72

N t 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90 }

Note that'these sets are finite, that is, they have a finite number , 12 in
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each cases of elements, How is this different from the set of multiples

of a number'? 17,9 there only a finite number of mixlti ples of any number?

The set of multiples of a number is all p..C.ChACtS of that number and whole

numbers,, so it cannot be finite. Now hack to di-visors., The divisor of a

number r111213t be mailer than the :au,mb Thus the set of divisors

necessarily contains only 44 finite xtumber of elements..

Second,, the d. of 72 zi.otd wi.1.3 be. a common iivisor of 72 and

90. Let's take the inter$e. :don. of tivz, S: and N to find common

divisors of 72 and 90,

SI N 18

How does the it of the of s of two numbers compare

with this? For one thing, this set, is finite and the set of common

in-mit/pies of two numbers is infinitk: For example,. the set oit. multiples

of 4 is (excluding 0))

4, 8, 12, 16 20,,

and of 5 is

5, 10, 15 0, 25 30k, 35,,

The set of common multiples of 4 and 5 is

t 2 0 400 60 , ,

Remember that this hap ends to he the set of multiples of ZO so it is an



set,. Note that both sets have a tom allesit element:

1 for the set of common divisors and the 1, c. it 1.1 for the set of !multiples.

Third, the g c & will be the greatest number in the set of common,

divisors of 72 and 9O, Thus, the g.c.d, of 72 and 90 is 18.

Now, using these we define, g e,, d.,

Definition 1 large6it warfaber which divides two whole

numbers is calle41 their grezAtek:t coy imon divisor,.

Kt is standard to symbolize the g. dt, of two numbers a alzd b by a b4,

Look at the set of coi mon divi6ors rh of 72 90 in relation

to 18, Eaecll of the common diviAors divi& 18 Might this be true in

general? Suppose we investigate the ia E:1.7 z&V.ons oI these numbers to

see if we can stie, why each common fac-tor divides the c d.

72 et 23 x 32 and

90 at
.22

We have seell that 18 2 x 3 c, d. of 72 and 90:. Suppose we

regroup he factorizatiowas of 72 and 90 6o that the fa. -:to;- of 18 t.4 Z x 3

is obvious

72 (2 x 32)) x

90 q2 x 32* 5



4,:yte that th r are Sao cor.frtm-.),, factors a 72 and 90 other than 24 3 1),

This is as it should b ence 2 x 32 rl 18 ie the g.c,d, This also tetneans

that any ccunrairm factor a 72, ar>r/ 90 r t s me nagriber with no more
prime factors than one few.tor 0,r 2 and two factors of 3 Fiercze any common

factor of 72 and 90 mnat have the sarr.te factors as 18 and in equal or

fewer number.; Thum every eon-anon tactor must divide 18.. This discusnion

:should S Uroi s t an.other shod of finding the c . d, of two numbers besides

finding the interser.tion of. two set.,-/,,, cr.! divisore Corsider 120 and 1084.

Factor these narribers into prime factor

120 7- 23 x 3 x S

108
Z x 33

We see that tor a number to he a common acc:tor of 120 and 108 the

greatest zunnber of itaaltors of a it can have, i3 two and the greatee number

of factors of 3 it can have i one Xt can haw.: no tiactor of 5 becau5e then it

would not be a factor o§. 103,,

Hence, the greall-eat corm-non "factor will be

We can see this clearly if we regrottp the gal:tors el 108 and 120,,

1.08 2 x It 3

120 422 x 3)) x 2 x 5
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are no kr.onrimon tactoris other than the two

Let's ,he ttA our generalization abt all r.omrnon fa

rhe set of factors of 108 is

A t 6,, 9,

The sst of factorb (.0 120 is

tc, 1,, 2,. 3,. 4,, 5,, 6

The set of cr.rcirrion factors is

A B 2, 3,,

Z's and the one 3

e.tort dividing the gr,c, d.-

12 18, 27 36, 54 108'i

8, 10 12,, 15, 24 30 40

4, 6,. 121.

60 120)

Each common factor divides the g. c. dr, This generalization always

holds and car be used as

Definition 14

which has th

1 itt divid

Any

alterntette definition of g.

Th e 0E two whole numbers is a whole number

e Lolilowing two propel!ties:.

es both numbers..

common factor of the two !lumbers divides g

Exercis
raetou,o

es: Find the g, c d of the following pairs of tlumbers by two...,sawestwo 4.

zn etho ds,

L. (816)

2, (25,,45))

3., (108 48)

4,, (54 36)
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AlgorithmWs. ... 7.1..*, woo

An alternate not,thod o* finding the g c, d.. of two nulrerabers which

closely rpserables the procems of division and is in fact based on the

Division Algorith-rn has been developed. This method is called the

Euclidean Algorithm A ripscific. extzrni.110, follows,

Srappcise

we find the g.. c, d.. of 356 and 96.

1,, We first divide 96 into 356,

96 r356
Z88

68

2,, Next we divide the remaiz der of this division into 96
1

68 T-96
68
28

Again wt. dividl t1 t0 the divi6or,

2
28 68

56

4, Again

1Z F28
24

5, Again

4 ) 12
12
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This process terminates when we g

of the two numbers is the previous re

Let's check by a previous met

96 and 356,

Factoring into primes w

96 tr,
5 x 3 (22

356 (2 )) x 89

So the g.. c, d is 4

should ask why, Et a

which just happend

finding the go c, d

PP

vt a remainder of Or The c., d

mainder in, this case 4,

Lod to see if is indeed, the c, d, of

have

x 23 x 3

and apparently the above process works. We

a s on the surface, to be a hit and miss method

s to work, . To show that the use of this method in

is justified is a rather complicated and involved

process, Et would not suit our purpose to present it here, Such a

justification

So to f

noay be found in the appendix

ind the g,,c,d of two numbers we Knay lase the process called

the Euclidean Algorithm., For convenience,, a summary of the steps of the

process follows

To find the g c, d of two given numbers we

1., Divide the smaller into the larger, obtaining a remainder

2 Divide r
1

into the divisor of No obtaining another remainder r2.

3. Divide this remainder r2 into r
1

the divisor of the second division

to obtain a remainder r
3
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4, Continue this process of dividing each new remainder into the

previous remainder (used as a divisor the time before)) until we get a

zero remainder,,

The last non-zero remainder is the g, co d, of the two original numbers

Note that we are not concerned with any quotients, only the remainders.

Exercises:

In Find the go cod., of the following pairs of numbers by use of the

Euclidean Algorithm,

an (24 284))

b0 (85 25))

co (21,49))

2 Find the go Cr, d. of 8, 32, and 6O (Review what the go c do of

two numbers is and then extend this same idea to 3 numbers)).

Reducing Fractions

The go co do is used most often in arithmetic in reducing fractions.

What we need to find to be able to reduce a fraction is a number which is

a common factor of the numerator and denominator and preferably the

largest common factor, Generally, the factorization method of finding

the go co d, is most profitable in this light. For example:

Reduce the 126he fraction to lowest terms°84
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Factoring, we have

126W2x32x7

84 w 22 x 3 x 7

Then locating the go co do we can show

126 (2 x 3 x 7) x 3

84 ro i2 x 3 x 7) x 2

126 2 x 3 x
So -14- ( 3---mrf x 3 (lx(2) 32

02-

It is obvious if we write it out this way that the go co do has been factored

out of both the numerator and denominator giving a fraction equal to L

Relationship between go co do and 1. C Eln 0

There is an interesting relationship between the go co d and lo corm,

of two numbers which has not yet been made obvious, An example should

help us see this relationship; consider 84 and 126.

Find the lo co rno

84 22 x 3 x 7

126 2 x 32 x 7

The le co mo of 84 and 126 is 22 x x 7 252

Find the go co do

84 '41 (2 x 3 x 7) x 2

126 vs (2 x 3 x 7) x 3
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So g. cu do of 84 and 126 -a 2 x 3 x 2-4 42

Consider for a moment the product of 126 and 840

126 x 84 = 10484.

Suppose we factor the product.

10484 = 23 x 33 x 72

and rearrange the factors as

10484 = 23 x 33 x 72 = (2 x 3 x 7) x (22 x 32 x 7).

42 x 252

After we multiply what do we have on the right? The g cc d. of 84 and 126

times the 10 corn, of 84 and 126. Let's try the pattern again. Consider

75 and 30.

Factoring:

75= Z x 5a

30 = x 3 x 5

For 10 co m. , we have

2 x 3 x 52 lz 150

For g, c. d. we have

3 x 5 2.- 15
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The product of 75 and 30 is

75 x 30 = 2250 = 2 x 32 x5 Li (3 x 5) x (2 x 3 x 5z)

= 15 x 150 .

Again the product of the two numbers is equal to the product of

the g. co de and 10 co mo of the two numbers. This is a general pattern

which occurs for any two numbers, i. e. , for any two whole non-zero

numbers a and b , the f

a x b (g.

Exercises:,

1. For eac

(1a c. mo of a

1. C.

no

2

ollowing equation holds:

ca do of a and b) x (1. c. me of a and b ).

h of the following pairs of numbers, show that a x b =

and b ) x (go co d of a and b )

a. 24 and 204

b. 21 and 49

c. 140 and 350

0 Considering the above exercises, suppose you are given the

mo of two numbers, how could you find the g. c d. by a new method

t mentioned previously? Try your idea for 200 and 440 which have an

1. ce m. of 88, 000.

What about a case in which you are given the g. c. d. and want to find

the 1. c. m. by a new method?
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Unit 4 ENRICHMENT TOPICS FROM NUMBER THEORY

4.1: Why Use Number Theory For Enrichment,"

As has been mentioned earlier, number theory is an excellent area

from which to take enrichment topics for use in elementary school

mathematics. For one thing, as you have seen, many problems in this

area can be stated very simply and in terms of the simplest numbers,

the whole numbers. Also, the history. of number theory is one of the

richest and longest of any of the branches of mathematics and contains

many fascinating stories. For example, number theory really began as a

mystical, religious study of numbers. Numbers were assigned magical

powers and were considered things that actually existed rather than

constructs of the mind. There was actually a secret society devoted to

the study of numbers the members of which swore an oath not to reveal their

secrets or teaching about numbers. Numbers were named according to

what properties they 'were thought to possess. For example, there were

friendly numbers, perfect ralmbers, abundant numbers, and defective numbers,

square numbers and triangular numbers all with certain properties to be

discussed later.

Number theory can also give youngsters a look at the way great

mathematicians in the past have worked, in a context the youngsters can

understand. There are many patterns which occur in simple addition and

multiplication of whole numbers that youngsters can recognize. By
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observing these pattes, ns, the elementary student can ''discover" on his

own and feel that he is really doing mathematics rather than learning

rules and memorizing algorithms. Topics from number theory which can

be understood by youngsters should be presented to them for their enjoyment

and mathematical development, A few such enrichment topics are presented

in the following material. This material is suggested not only as enrichment

material but also to give the reader a longer and deeper look at the theory

of numbers.

We have thus far barely scratched the surface of this area of

mathematics. Now we will dig a little deeper.

4.2: Ancient Number Theory

Some comments have been made previously about ancient secret

orders which had as their purpose the study of numbers. One such group

was the Greek Pythagoreans. This grqoup was formed by the Greek mathe-

matician Pythagoras (c. 550 B. C0) whose name you may have heard

:mentioned in relation to a famous theorem in geometry. Pythagoras was

a pupil of Thales, who is thought to have done the first work in number

theory. It was a general practice among members of the society to

attribute all credit for each new discovery to Pythagoras, himself,, so

we cannot be sure about his contributions, but it is thought they were

very great. The famous philosopher, Plato, was a student of the

Pythagoreans.



The Pythagoreans attributed mystical powers and human characteristics

to many numbers. The even numbers were thought to be soluble,, feminine

and pertaining to the earthly and odd numbers were regarded as indissoluble,

masculine, and of celestial nature. One (1) stood for reason, two for opinion,

four for justice because it was the first product of equals ( 4 = 2 x 2), and

five suggested marriage, the union of the first masculine and feminine

numbers ( 5 si 3 + 2). One (1) was not considered an odd number, but rather

as the. source of all numbers, since 2 = 1 + 1 , 3 I +1 + 1, 4 = 1 +1 + 1 +1,

etc.

There is a striking similarity to these attributes of number in

ancient Chinese mythology. Here th.; odd numbers symbolized white, day,

heat, sun, fire, and the even numbers symbolized black, night, cold,

matter, water, earth. Magical powers were also attributed to numbers

in this mythology.

In judaeosChristis.n tradition there are certain numbers recurring

often. Forty days and forty nights of rain, Moses conferred with Jehovah

for forty days and forty nights, and the children of Israel wandered forty

years in the wilderness. There were the seven deadly sins, the seven

virtues, the seven spirits of God, seven joys of the Virgin Mary, and

seven devils cast out of Magdalen.

The Babylonians preferred sixty and their gods were assiciated with

the numbers up to sixty, the number indicating the rank of the goeii. Also,
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their number system was based on sixty in a manner similar to the way

ours is based on ten.

Numbers related in a certain way

if we consider the se4s of divisors of the two numbers 220 and 284

we notice something very peculiar, The sets of divisors of each are

((excluding the numbers themselves,\)

of 220, {1, 2 4, 5, 10 U 20 22 44 55 110

of 284, {1 2 4, 71 142)

Ef we add up the divisors of each we get an interesting result.

1 + + 3 + 5 + 10 +11 + 20 + 22 + 44 + 55 + la0 s, 284

1 + 2 + 4 + 71 4).142 220

The divisors of each add up to the other !! The Pythagoreans knew of

such pairs of numbers (in frsct, they knew of this paid and called them

friendly or amicable numbers, The Hindus also knew of them,, possibly

before the Pythagoreans and a good omen was attached to such numbers

by them° Almost a hundred pairs of friendly numbers are known today

(220 and 228 is the smallest paid but nothing has been proved about how

many there actually are of them° Another pair is 1184 and 1210. Can

you prove it?

Numbers were also classified as to how they compared with the sum

of their proper divisors Ithat is those divisors which are less than the



F.. .79K

given number), For example, the set of proper divisors of 12 is irlD 20 3 4, 6}

The sum of these divisors is 16, . The number 12 is called a defective (or

deficient)) number since it is less than the sum of its proper divisors, Consider

the set of divisors of 14, less than 14, 2,71) Their sum is 10. Fourtees

is greater than 10,, so 14 was called excessive. Now the question arises
011....1111NPWAAM

Is there a number whose divisors less than the number add up to the number

iteelf? Ott was known by the Hindus and Hebrews that there are such numbers

and these were called perfect numbers, The smallest one is 60 The set

divisors of 6 which are less than 6 is e lo 2, 3} and 1 41. 2 + 3 s 60 The number

8128 is also a perfect number. Very few such numbers are known today

(20 were known in 1961)), and it is not known whether an infinite number of

them exist or not. Euclid,, whose name seems to crop up everywhere in

mathematics, discovered a formula which gives even perfect numbers. One

interesting fact is that all perfect slumbers discovered to date are even Et

is not known whether odd perfect numbers exist or not. Et is known that

any even perfect number must end in 6 or 8.

Figurate numbers

In early Greek days, notably by the Pythagoreans, numbers were

recorded by dots. These dots were arranged in arrays which suggested names

for the numbers and also allowed properties of the numbers to be derived

from the geometric configurations. Consider the following arrays rep-

resenting the numbers indicated.
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.) A A A A

0 4 0 4 U G

U 0 0 0 n n
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a 0 C. V.

0 4 V. U 0 0 0

u 0 3 I'

A p Q G 0 0 G 0

1 3 4 6 9 10 15 16

From The configurations, numbers such as 1 3,, 60 10,, and 15 were called

trisajaular numbers and numbers such as 1,, 4,, 9, and 16 were called mare
l.F.MIR

numbers (1) was considered to be both a square and a triangular

number, ) We might note some interesting facts about these numbers, Con-

sider first the triangular numbers, Note that

1 h-f 1

3 e 1 + 2

6 ,te 1 + 2 + 3

10 e 1 + 2 41. 3 + 4

15 re 1 + 2 + 3 + 4 + 5

Do you see the pattern ? What would be the next triangular number after

15 ? Es it 21? Is the next one after 21, 28? Think of the joy of accomplish-

ment an elementary student could experience in discovering this for

himselC tf we look at the rows of the geometrical arrays for the e numbers,

we notice something very similar

OM.

1
mom ma =Me

1 o 2 u

1

3

0

0 0 t,

1

2
3

4

Thought Exercise

The first triangular number is 1 the second is 3 Is 1 + 2, the
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third is 6 s 1 4. + 3 , and the fourth is 10 1 + Z +3 +4. What would

you guess the seventh triangular number to be? The tenth? Try to

generalize this, What would the nth triangular number be in terms of n?

Now let's lookiat the square numbers,

1

4=x 222
9 s 3 ° 3 32

16rs4u 4 42

Do you see the pattern? What is the next square number after 16? is it 25?

Thought Exercise

Notice that the first square number is 1, the second is 4, the third

is 9 and the fourth is 16. What do you suppose the seventh one is?

Check your answer with a diagram. What do you suppose the tenth one

is ? The twenty-fifth? Generalize and tell what the nth one would 134...

in terms of n,

Above we notice that the square number 4 was equal 22 0 We say 22

in words as '2 squared Also we say 32 as 113 squared " En general,

we say n2 as "n squared'', What do you suppose is the origin of this

term?

There is an interesting relationship between triangular and square

numbers which we can discover by looking at the array of dots representing

theme



1 3 6

4

o

0 o n A

10
n

1

Notice the lines that have been drawn in the

been done with each square number? It has

numbers !!! That is,

1 1

4 1 + 3

9 3 + 6

16 te 6 + 10 .

C.

t, r 0/

N /0
/ 9

l

square numbers. What has

been divided into two triangular

In fact the second square number has been divided into the first and second

triangular numbers, the third square number has been divided into the

second and third triangular numbers, and the fourth square number has

been divided into the third and fourth triangular numbers. Might this be

true in general? The reader might try his hand at proving it. It is true,

though it will not be shown here, as it Would necessitate a knowledge of

algebra not assumed in this material; Think of the motivation that

discovering such patterns would give to a youngster, urging him to

press on to try other triangular and square numbers for other patterns.

Elementary number theory is permeated with such possibilities for discovery.

More on primes

We have previously discussed prime numbers in a general way,



We will, now look at some specific relationships, Consider the pairs of

primes 3 and 5 5 and 7 11 and 13, The numbers of each pair differ by

two, Primes of this type are called twin primes and many have been

known since antiquity it is not known whether there is an infinite number

of such pairs or not though it has been known since 1919 that these becom

rarer and rarer as numbers increase, As has been mentioned earlier,

Euclid proved that the number of primes is infinite and this may suggest

that many queetions about prime number pairs or triples, etc, could be

answered in the same manner, but this has not yet proved fruitful in

the case of twin, primes.

Exercisesg

1. Determine whether the following numbers are perfect, defective,

or excessive.

a. 28

b. 25

C0 36

d. 496

e. 225

f. 144

Show that 96 and 115 are not friendly numbers,

3. What is the ninth triangular number? Show it as a triangular array.

What is the twelth triangular number?

4. What is the arithmetical difference between the second and third

triangular numbers ? The third and fourth triangular numbers. The
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fifth and sixth? The twenty-fifth and twenty-sixth? The nth and the

n + 1st (the number following the nthD?

5 What is the ninth square number? The twelth? The twenty-fifth?

6, Of what two triangular numbers the eighth square number (60

the sum? Of what two triangular numbers is the ninth square number

the sum? The twenty-fifth square number? The nth?

7, What is the arithmetical difference between the first and second

square numbers? Thz second and third square numbers? The third and

fourth? What is the pattern? Try and generalize this,

8, Determine which of the following are square numbers,

a,
b1

15

36

C. 121

do 143

e. 144

9, Determine which of the folltowing are triangular numbers

a, 28

48

c 45

d 78

10, The Pythagoreans also called certain nunlbers pentagonal and

hexagonal. For example



some pentagonal numbers are

1 5

some hexagonal numbers are

la ZZ 1 6 15 28

Lines have been drawn in to help you see the shape and how the figures

are formed. Try your hand at discovering patterns. What are the

arithmetic differences between successive numbers of each type?

Is there any relation between pentagonal and hexagonal numbers? Between

theie and square and triangulir numbers?

4 3 Some Famous Theorems and Conjectures

One conclusion about mathematics to which most students seem to

come sometime in their elementary training is that mathematics is a fixed

and unchanging body of knowledge in which all problems are solved and no

questions still unanswered. Many times this serves to leave them with the
stagnant

feeling that mathematics is and unrewarding to study., All too

often we perpetuAte this misconception by our emphasis on rules which

must be accepted without question and drills which must be carried out

We must try to do just the opposite. It is necessary that students leave

us with the impression that mathematics is a vital growing subject,

that there are many unsolved problems and new areas to explore. The

theory of numbers can offer some concrete examples.



There are many famous, unsolved problems in the theory of numbers.

Most of these go by the name of a conjecture, usually associated with the

mathematician who first formulated them, One of the most famous of

these is called a theorem, though it really is still a conjecture as no

proof of it has ever been recorded. Rt comes to us from a famous French

mathematician of the seventeenth century, Pierre de Fermata This man

could have been credited with important discoveries in many fields of

mathematics. He might have ranked with Descartes in analytic geometry,

with Newton and Leibniz in calculus, and with Pascal in probability.

Unfortunately Fermat seems to have had very little interest in publishing

his results so the aforementioned gentlemen are credited above him in

the listed fields. This disinterest of his in publishing beings us to one

of the most famous unsolved problems in number theory, sometimes called

Fermat's last theorem.

The story of Fermatas last theorem really goes back to the ancient

Greeks and to one in particular, Diophantus of Alexandria (co 275 Au Do

Diophantus wrote a work called the .Arithmetica which brought together

the algebraic knowledge of the Greeks. In this work, there was a discussion

of a theorem well-known to anyone who has studied plane goemetry in

school. This theorem is the so-called Pythagorean Theorem. What is

says is this:

Given any right triangle whose sides are of length a, b,
and c, c being the length of the side opposite the right
angle, then the following relation holds for a, b, and co



a2
+ b

2
tre. c

2

0A6
In the Arithmetica, there was a discussion of triples of integers a, b, and

IIIIMainrapm===Clegiiaa

c which satisfied the above relation. Two examples of such triples are

a t z = . 3, b 4, and c t.4 5 and a IT 5, b 12, and c 13. We can show that

these are triples satisfying the above relation as follows.

32 + 42 2a 9 + 16 21 25

so 32 + 42 =52

and 52 + 122 25 + 144 169 ta, 132

So 52 + 122 tx 132 .

Obviously enough such triples of numbers are called Pythagorean triples.

Rules were given in the Arithmetica for determining Pythagorean triples.

Now let's return to our hero qor villain, whichever the case may bey,

Fermat, He had obtained a translation of Diophantuag work and was very

intrigued by it. He studied the Pythagorean triples and tried to make

generalizations, Out of this came his last theorem. In the margin of

his copy of Diophantus, he wrote qthis is paraphrased)

gt is impossible to have 3 integers

a, b , and c such that
3 3 3a + b c

or a4
+ b4

ra c
4

Or, in general, for any n greater than 2 it is impossible
to have three integers a, b and c such that

an4bnw c
n

E have discovered a truly wonderful proof for this but
the margin is too small to hold it, '
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He never published his proof. Mathematicians, both brilliant and not

so brilliant, have been trying ever since then to prove or disprove his

conjecture, Zt has been proved for some particular values of n but

as we have seen this does not suffice to prove it in general. In fact,

it has been proved for some values of n up to 250, 000, 000,

Exercise

Another set of Pythagorean numbers is 6, 8 and 10v We can check

this by

62 + 82 te, 36 + 64 100 e 102

Hence 62 + 82 102 0

What relationship can you see between this set of triples and the Get

3, 4, and 5? Try the set 9, 12, a, rid 15. Is this a Pythagorean triple?

What would be another Pythagorean triple? Can you generalize? Try

your generalization on another set of Pythagorean numbers, say 5, 12

and 13. What does this suggest about the number of Pythagorean triples?

(How many are there?))

Another famous conjecture ie, that of Go/dbach, a Prussian mathe-

matician of the eighteenth century. Goldbachis conjecture deals with

prime numbers. We can easily develop this conjecture by observing

the following:
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8 -% 3 3 + 5

10 3 + 7

12 5 + 7

14 + 7

0

On the left, we have all even numbers through 14 (excluding 0). What

do we have on the right? What kind of number is each number in the

sums? A prime !! We might conjecture that "every even number

is the sum of two primes". Such a simple statement should be very

easy to prove, after all we know a lot about eve:. numbers and a lot

about primes. There is one sour note. Mathematicians have been

trying for 200 years to prove it and have not yet succeeded !! Et is

interesting that it has been verified for all numbers up to 10,000 and

some beyond. But it may be wrong for 10 563, 264 !! Again, we

have an example of a statement which is known to be true in many

specific cases but has not been accepted because no one has proved

it in generals Such is the nature of mathematics

:exercise.
Write all even numbers up to 50 as the sum o two primes. Can

any even number be represented as the sum of two primes in snore than



one way? Can the sum of two primes ever be an odd number?

We have mentioned in a previous chapter that a forrnula has been

discovered which gives the approximate number of primes less than a

given number. Some more specific theorems have been proved about

the occurrence of primes in intervals between numbers° For example,

in 1845, the French mathematician Bertrand conjectured that between

any number and its double there is at least one prime. For example,

between 3 and its double, 6 there is the prime 5. Between 10 and 20

there is the prime 13. Between 50 and 100 there is the prime 89. Fifty

years after Bertrand's conjecture, the Russian Tchebyshev proved it

In 19110 Bono lis improved on this by giving the formula approximating

the number of primes between x and x for any x , that is

between a number and another number half again au large.

Exercise
01111167;.11110111111111..

Find a prime between 15 and its double ; between 20 and its

double ; between 75 and its double. Can there be more than one?

We would not need to stop here in our look at famous problems,

solved and unsolved, but the list i . endless and we shall not g() on.

If your curiosity has been whetted,then the desired end has been

accomplished. It is hoped that you have been stirred to make a

deeper scarce into mathematics in general and the field of number

theory in particular. Little more needs to be said except to restate



the conviction that the theory of nurrxbers is a field of mathematics

which can make important contributions to the teaching and learning

of elementary school rnathematics Its importance and value as a

motivational device and as a representation of mathematical beauty

and truth should not be overlooked, If you are convinced of that

then these units have served their purpose.



Iq The set of primes is an infinite set.

Proofs

A discussion Which can be interpreted as a moor of this statement

was given by NUclid over 2000 years ago. The proof glven here is similar.

It is of the type called an indirect proof. Ancail that this method was used

in proving that the set of even nuMbers and the set of odd nuribers are disjoint.

The indirect method proceeds as follows. tle assume the opposite of

what we want to prove and see Where it leads us. if such en assumption leads

to something false or contradictory then we know the assumption vas false and

hence its opposite oust be true.

Thus we begin the proof that the net of primes* Ps is infinite with the

assumption that this set is not in This is equivalent to saying that

tbe APA lo home rot Ape3on of ttAt 1104t{Sot hErtvvem rtAlt* tic

tra1.3itzl. /;;Ve, 4 elAt im either me vv Mo 4thev Tbexe e

titt twitt4 WUJoe.

Abwp one meaning of the statement that the set of imeal i4 anite

is that we could makeacomplets listing of the set* such ass

P Pip P29 Py 000$ Y111

This says that pio pv ply ,400 o, is a listing of all, the prime numbers and

that there are only n primes.

Let It be a new nether formed by multipIyiag all the primes to

and adding I. Then

(A 't
k tt, (pi p2 x p3 x 004 yd 4

1°

Now It is larger than any of t peavaso We weitte: this as

< k$, rt)2 < < k, <



and say 'pa is less than k", "p2 is less than k" and so on. Also k is either

prime or composite, since it is neither 0 nor 1. (it is not 0 because it is

equal to some number plus 1. It is not 1 since this would be the case only if

k 0 4- 1

so that
pl x p2 x ..» x P Ng 00

This would mean that one (or more) of the primes wen 0, but 0 is not a prime.)

Wow we will check both of the eases! (1) k is prime and (2) k is

composite to see where each leads us.

(1) Suppose k is prism.

Ile said k is larger than any of the pis in P so k cannot be in P.

This contradicts the assumption that P is the set of aU primen

Thus case (1) leads to contradiction.

(2) Suppose k is composite.

Recall that a composito number has factors other than itself and 1

and in fact has Twins factors (by the fundsmenta3. theorem of arithmetic).

Thus there is a prime which is a factor of k. Since P contains all the primes

this factor of k has to be an element of P. Suppose it is pa.

Another way to say that pa in a factor of k is to say "pi divides k" or

(p1

PI I k*
Since p1 is a factor et pa p2 x p3

ac p2 x p3 x

Thus we have that

Pn) or

Pi I (Pi x P2 p3

Ito 0 0

)

pnv pa divides

(B) pa I k and pa I (pa x p2 x p3 x pa).



We will now use an 0301WC180 from section 3,2. This was

if a I 12 and a I co then a 1 (b c).

Since pi divides both k and (pi p2 x p3 pn) it divides

their diffsrenee.

pi 1 pc (pi x p2 x p3 x pn)].

Paean that

kabixp2xp3x.,xpn)+1,
so

CD) k (pi p2 x p3 x pn) 1.

From equatien (D) and statement (C) we have

(E) pi 1 1,

and this means that pi Mg 1 since the only whole number divisor of 1 is 1.

We now have a contradiction. We have that pi is 1 and pi. is prime

vhich cannot be since 1 is not prime,

The assumption that led us to this contradiction is that pi I k,

Recall that this CMS from our assumption that k is composite and that it

therefore must have a prime factor.

Suppose instead of pi we had taken p2 to be the prime factor of k,

Can you see that this would make no difference? in mathematics we deal with

generalizations so that we may prove things with one general case rather than

many specific cases. In car proof we chose p1 as the prime that divided k,

There was nothing special about pi and anything that we have proved about it

holds for p2 or p3 or any of the primes in Po

Thus no prime in P can be a factor of k, because if we assume that

one of them is a factor of k we arrive at the contradiction that the prime

must be 1, as in (E) a



Bo if k is composite then there must be s grim* which is a factor

of it that is not in P.

(3) !WM:
We started with a set of primes, P, that we assumed to contain all the

primes. We formed a new numbeg k, item all these primes by taking their

product and adding 1. We saw that k was not in the set P.

If k was prime then P could not be the set of all primes. Also, we saw

that if k was composite then it had to have &prime factor that was some

prime not in P. In either case P could not be the set of all primes.

Onus the assumption that P contained all primes led us to the conclusion

that there was a prime not in P. Obviously, the conclusion contradicts the

original assumption. This tells us that this assumptioa, that P was a finite

set, must be false. We also said that P must be either finite or infinite.

Thus P must be infinite.

sr Use cot the Euclidean Division Algorithm to find the g,c.d. of two numbers.

We will first use the algorithm to find a number associated with 18

and 48« We will then show that this number is the g.c.d. of 18 and 48.

Recall that to find the &c.d. of two maabera by use of the algorithm

we first divide the smaller of the two numbers into the larger. Next we divide

the remainder of this division into the divisor of this division. This process

of dividing the remainder into the divisor is continued, until a zero remainder

is obtained. The last nonzero remainder is the desired timber,

A. Find the g.e.d. of 18 and 48:

(24 2 (2)
1 (3) 2

18 Par 12 rE 6 Tiff
12



Thus 6 is the number determined by the algorithm.

S. abOW that 6 is a common divisor of 28 and 118s Ter this special ease

all that is needed is to divide both 18 and 48 by 6. However we shall use a

more involved process because it can be made into a dal proof of the

process for all pairs of ntsbers.

(k) we know from (3) above that

12 6 z 2.

This Means that 6 1 12.

(5) From (2) we know that

18a (Y2 X 3.) 4* 6

(6) Tram (4) we know

6 1 (22 x 1). Also we know

6 1 6.

Pram a statement (theorem) which we proved on page 53 we know that

if a I b and a I c then a I (b + c). Using this, we

have 6 1 (32 x 1) and 6 I 6, ao 6 I t(22 x 1) + 6] or, slime in (5) we

hove 18 (12 z 1) + 6, 6 1 19.

(7) ix 6 I 18 then 6 is a factor at 18 end it is also a teeter
of 18 z 2 so 61 (38 x 2).

Using the theorem from page 53 again,

6 1 (18 x 2) and 6 j 12

so

or since

61 [(38 x 2) + 3.2].

(18 x 2) + 12 as 48

6 1 48.



(8) Nov we have

6 1 48 and 6 1 18.

Thus 6 is a common factor of 18 and 48. We have not yet shown that

it is the ,greatest ommmon fatter« To do this we need to ghaw that any common

factor of 18 and 48 divider 6. (See Definition 24, page 684

Co Show that 6 is the greatest common divisor of 18 and 48.

(9) Let c represent any common factor of 18 and IC Norio want to

show that a 16.

(1.0) In (5) we saw that

(12 le + 6 NI 32 4. 6

Nktel this we can get

12 =18 6

Cu) Frau (3.) by the Division Algorithm we can get

(1822)+ 12

(12) If we substitute fOr 12 in this equation the expression for 12

found (10) w e g e t 4 8 _ ( 1 8 x 2 )+ 1 8 0. 6.

We can sUbstitute 18 x 1 for 18 and get

48 I =
( ] 8 2 ) + ( 1 8 X 3.) . 6 .

Then by the distributive law

ai x (2 4. 1) 6

is x - 6

Pros this equation we can get

6= (113 x 3) -48.

This is the equation we want because it is in terms of 6, 18, and 48,

the numbers in *deb ve are interested.



(13)

lB and 118 so

-7-

Let's consider c again, We know that a is a canon f4ctor or

c 1 18 and 0 1 118,

(is) it c I 18 then c (18 x 3).

(15) Also if c I 08 x 3) and c 148 then by exercise 3 on pegs 54,

c I [(18 x 3) 1483-

(i6) Tree. (12) we have

6 is 08 3t 3) 48.

Thus

c 1 6.

This is Vhat we wanted to shoe* c represents any cannon factor of lB

and 48 and vs have just shown that c 16. /Sat 6 is the largest factor of

itself, 6, hence 6 is the g.cd of 18 and 1480
a w gloom" woroma

We have not really proved anything except that the Zuclidean Alsoritase

can be used to find the gaid. of 18 and 118« This is not sufficient to prove

that it works in generale To do this we wad have to make a proof dealing

with dal numbers and not specific ones. Noy times in mathematics it is

instructive to see hew a theersa can be proved for one specific case and then

use this as a model filo a more general, proof.

A general proof that the uclidean Algorithm can be used in all cases

is not given here to,s some tools are needed that we do not have at ovr digposal.

The general proof preeeede vary much in the same manner as ye have seen for lB

and 48. The Divisizia Algorithm is used as we did iu (4), (5) and (u) on3q in

a more general form such az for every pair of positive integers a and b: there

are two other positive integers eg, and r such that a r where r < b.



1) Yes
610 2 X 305 324 /.24 2 X 512

2) Yesf, 4 X r. :3 2 X (2 X t:fld L2. X

Yesp 6 X m 2 X (3 X ri.nd (5 X 0(1%140

Tess, 3 X k 3-3 2 X (18 k) 4 fits, (18 X k)EW.

ma 4 4 4 wagon 4,441

The:oer xs ric, k that 25 2 X k. For th:.f3 to
truo 12Y2 wli.th is ru..:t a number.

Thought

0
0

ppf.LTer,

exeroiss

(2 X 0)4i4
c2 3

X 2)+ 1 5
(2 X 3) -4- 7

wo do

'4) Let (2 and (2 X an, y two odd numbarf.l.
coam

(2 X (2 -2.) (2 n ÷ 2 m) r (1-/- 1)

by the 9,csoc. an-2. comra.

By thc, dintribut.i.cn 1ai. ;

2 X (n+ f

and y applying t1,-. ior /TM 13/.:(j.11

whir.;). in an even raumbor.,

So nun of t.r..) odd n73).:* 2 r: 6. 2 or: 31 1 it3 CfP:nl YtIVIlbr-«7?e.

S5.. :a (.1. rf.L' ctu o 1;

:14-1) (2 X zi-1).,

ocid

.E k -10 the ;,":,c;cbruic rif two binomial expressions which is
to

(2 X n) X (2 X 10+ (2 X r) X14-(2 X ) Xl-/- 1



or

.2.-

(4 X n X m)4(2 A n)-/- (2 X m),4- 10

Using the distribution principle

whick' is

2 X g2 X n X m)4

2X

n *0+1

(some whole number) + 1.

B the first 3 terms we have

the product of two odd numbers is odd°

2) 2 x n is an even number and (2 x m)-4.1 is an odd number° Find their sum°

(2 x n) -1- (2 x m) 1 m 2 x (n+m) 4 1 by the distribution principle°

This is

2 x (some whole number)-041

an odd number

3) Using the odd and even numbers from exercise 2 find their produoto

(2 x n) x B2 x 4g, = (2 x n) x (2 x 10/ (2 x n)

by the distribution principle0 Using the associative principle we can get

2 x (n x 2 x m)iL(2 x n)

and by the distributive principle

2 x Bn x 2 x m)/-22,70

and even number°

4) See exercise 10

22

1) 2n 4 = (2n +3)4 1 and 2n-t 4 0 (2n-i 5)-1

So 21144 is one more than 2n4.3 and one less than 2n1.50

2) Likewise, 22147 = (2n4-041 and 221+7 w (221+8)-1

3) Between 2n4-9 and 2ntll4

2n*10 since 2nt10 = (211-6) 1 and 2n+10 = (222-111)-10

Between 2n-t16 and 221418°

2n417 since 2n-i17 - (2n416) 1 and 221417 a: (221418)-10
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Between 2n 4 2,01 and 2n 1-103.

2n4 102 since 2n .0102 as (2n +101)4. 1 and 2n4 102 = (2n4 103)-1

Islit 021

nought exercise

0,3,6E9,12,150
Yes
Yes
Yes, 0 = 3 x 00

1) A set of multiples of 5 im0oo1oo15.io o 5 x 0, 5 = 5 x lo 10 = 5 x 2,
15 = 5 x 3

A set of multiples of 6 =t0,6,1218i , 0 = 6 'coo 6 = 6 x 1, 12 = 6 x 2,
18 = 6 x 3.

A set of multiples of 7 =19,704924 o = 7 x oo 7 = 7 x lo 14 = 7 x 2,
21 = 7 x 3.

2) General elements of the respective sets of multiples are

3 x no 4 x m, 5 x k, 6 x lo 7 x p. (any letters will suffice)

3) 6 is a multiple of 1,2,3, and 6, since'6 = 1 x 6 and 6 = 2 x 3.
Factors are 1,2,3, and 6. See previous answer

12 is a multiple of 1,2,3,4,6, and 12, since 12 = 1 x 12, 12 do 2 x 6,
and 12 = 3 x 4.
Factors are 1,2,3,4,6, and 120

4) 70 2 x 5 x 7
Factors are 1,2,5,7,10,14,35,70.

5) No Yes. Yes, No0

6) n factor of n reason

5 1,5 1 x 5 = 5
6 1,2,3,6 1 x 6 as 6

2 x 3 = 6
7 1,7 1 x 7 = 7
8 1,2,4,8 1 x 8 = 8

2 x 4 = 8
2 x 2 x 2 = 8

9 1,3,9 1x9 =9
3 x 3 = 9

10 1, 2, 1 x 10 = 10
2 x 5 = lo

0 1,21314.... 1 x 0= 0
2 x 0 . 0
3x0=0
0
0
0



.4..

1 is a factor of every whole number
lxn=nfor any whole number, no

7) List some elements of B,C, and D to show that they are the same as
those in Ato

Page 39 Thought exercise

Et1P

VW = 4,6,6,10,0.05 all even numbers except 2)
0/10 = 9,15,21,25,004 all odd-numbers which are not prime)VIP 3,567,11,13,17;..4 (all odd numbers which are prime)

Page 41

1) 16 as 1 x 16 = 2x8s2x2x4 2x2x2x2 4x4
Factors are 1,2,4,8, and 160

2) 4 = 1 x 4 m 2 x 2
Factors are 1,2, and 4

3) The factorizations of 4 are "contained in" the factorizations of 160

4) Yes, some qualification of the term "factorization" is needed in order
to avoid the repeating of ones,

17N22....tf6a,

1) a) 32 = 2x2x2x2x2$ since

2

214-

b) 18 = 2 x 3 x 3, since

3.

2
3

8
or

In the same manner
o) 38 = 2 x 19
d) 16 2 x 2 x 2 x 2

76 Is 2 x 2 x 3 x 3
f '72 = 2x2x2x2x 17
g 45 = 3 x 3 x 5
h 25 = 2 x 2
i) 700w2x2x5x5x7
j) 75 043 x 5 x 5

or

32

'2 16

2 2
/

~8

2
/

2 2 4
I

2 2 2 222

18

2 9
/1

2 3 3



51.

a) 32 2
5

b) 18 . 2 x 32
o 38 24x 19
d 16 . 22

36 2 4x 3
f 272 -s x17

45 32 5g

25 m 5 2 2
1 700 2 x25 x 7

75 m 3 5

3) 32 go 2
5 2 x 2

4
2 x 16

36 2
2
x 3

2
2 x (2 x 3

2.
) 2 x 18

75 3 x 5
2

3 x 25

The larger number "contains" the factorization of the smaller.

256 28,since

425 5
2 x 13, since

or

10,422 2 x 3 x 1737, since

)232
3 /5211

2/104-0
or

or
4

2 2

2/

2 2
/ j
2 z

425,

5 2 13

256

64

6\/*'

2 2 2 8
/ I /

2
/

2 2 2 4

1 2/ 2/

10422
/"-'

2 5211
/

2 3 1737

Page S4,

1) 4(4 and 2/8, 2/12, 2/16 since 8 m 2 x 4, 12 = 3 x 4 and 16 is 4 x 4

Proof:

soblekxaby definition. P. 48.
Then b x c (b x a) x c when c is any whole number
So we can get

b x (k x a) x (k x c) x a



.6.

by the associative and commutative principles°

Then we see that

b x 11. (some whole number) x a

BO

al(b x o)

2) Numerical examples as aboveo

Proof
al(b t o) means that from the definition P. 48

(b4- 0) Iwkxa

Also
alb means

bftlx ao

Now we can got by substituting 1 x a for b

1xa4o makxa

Using some algebra we can get

at (k x a) (1 x a)

and by the distributive principle

o ak (k 1) x a.

Thus
a - (some whole number) x ao

(We really should justify that k - 1 is a whole number and not

negative. This can be done by referring to

b+ourkxa and b ge 1 x ao

Is it not obvious that b a is larger than b? Is it also not

obvious that k is larger than 1?)

So

10°

3) Numerical examples as above

afb meansbakxa and a/o meansomalx a.

Nov
b o (k x a) - (1 x a)0

So
b a (k . 1) x a by the distributive principle.

Then
b » a ma (some whole number) x a (as above)

An
al(b o)



Pimp,

32i3

;lain 62

1)

2)

98 (12 x 6)+2
125 (25 x 5) +0
49 (5 x 9)x,4

9.32,
So l Cello

40 . 23
So 1.c.m.

60 2,
2

So 1.o.m.

2 m 2
1
,

So 1.o.m.

15 3 x 5
of 9015 is 3'

9
x 5 45o

x 5, 20 m 22 x.,5

of 40(-20 is 2' x 5 4o0

x 3 x 5, 225 12 x e
of 600225 is 2 x) z 5 ms 900.

5 m 52 ma x 3
is 2 x 5 x 3 30

)) Using 2 as a factor 5 times and 3 as a factor once gives l common
multiple but not the least oommon_multiole.

The least oommon multiple can also be found by intersection of sets
of multiples as on pp. 57-59.

AKA
1) Set of divisors of 8

Set of divisors of 16 i1,2,428,10
The intersection of these is i?.,2,4,83

g.o.d. is 8

21:13
2
3
, 16 2

4

So the g.o.d. is 23 gio 8.

2) Set of divisors of 25 t.,5,251
Set of divisors of 45 0,519,15,45}
The intersection of these is #95,)
So the g.o.d. is 5.
or

25 5
2

45 m 3
2
x 5

So the g.o.d. is 5.

3) Set of divisors of 108 m/1,2014,619,12,18,2706,54,1081
Set of divisors of 48 1,20,4,6,8,12,16,24,41)
The interseotion of these is 11,204,6,123
So the g.o.d. is 12.

a 2 3 I- 4loe 2 x 3 ,2%8 2 x 3
So the g.o.d. is 2 x 3 12.
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4) Set of divisors of 54 g12,3,6,9,18,27,54e
Set of divisors of 36 ,2,3,4,6,9,12,18,36j

Intersection of these is (1,2,3,6,9,185
So the g.o.d. is 18

54 2 x 3 , 3o x 3
3 32 2

So the &c.d. is 2 x 3 18.

a)

b)

11
240r+

24

24

20

io p5
20

2
21[ 7/21

42.-Ir

2) 8 = 23, 32 = 25
2

60 se 22 x 3 x 5
So the g.o.d. is 2

Pam 74,

1) a) 24 23 x 19 204 22 x 71
1cn 2' x 3 x 71 1704

g. o. ,2
th el c

Loons x &cid. 1704 x 4 6816

24 x 284 . 6816

b) 21 3 x 7, 49

Loin. 3 x 7
2

g.o.d 7

1.o.m. x geo110 = 147 x 7 - 1029

21 x 49 = 10290

72

= 147

0) 140 22

1.0404 sla

x 5 x 7, 350 es 2 x 5
2
x 7

2
2
x 5

2
x 7 700

&code = 2 x 5 x 7 . 70

4 2.

So the g.o.d. i© 4.

5fr

So the g.o.d. is 50

So the g.o.d. is 70



..9.

loo.m. x 0.o.d. 700 x 70 49,000

140 x 350 im 49,000

2)
c.d. jteang52121.224112.111241011101W

00.0

There is an error in the problems 1.c.m - 2200

g. c. d. ,00201,134403.,
40

IlepagaslaLlteInxambers,,

Thought exercise

1 f 2+ 3444546%47 28

14 2 mi. 8 49 45

14. 2 4. 4 (n.1) + n the na triangular number*

Thought exercise

77 gis 49

.......
seo.......410410*

(7 by 7 and 49 dots)
*MootsMoo*.

10.10 100

2525 625

n.n n
2

Page 83

1) a) Perfeot sinoe 11 24 4.47 -0.4 28

b) Excessive sinoe 14. 5 6

c) Defective since 1424 3444'619412+18 55

d) Perfeot since 14-24-4+8 +16+314-624124 248 496

e) Excessive since 1+ 34.5.0615+25445475 169

r) Defective since 14.2.4-34.4+64-8449 #124.164-18424.0364.484 72 me 259

In each case the proper divisors of the number have been added

2) Factors of 115 are 5 and 23 and 5 23 )1 96

3) 1424.3# 44-50-6i-7+8÷9 45

1 +2i 34. #.11+ 12 78
o



4) 6

5) 9
2

10f.

3 sP 39 10 No 6 is 4, 21 - 15

81, 12
2

144, 25
2

625.

6. 26.1 25t so 26, 11+1et
ntil as n4 1.

6) The seventh and eighth, 64 26+360
The eighth and ninth, 81 361'45.
The twenty-fourtpind twenty-fifth,
The al and n . 1 "0

7) 4 - 1 3
9 - 4 5
16 . 9 7

All the differenoee are odd numbers.

The n square number - the n let square

8) b) 36 es 62

o) 121 112

e) 144.122

9) a

d

28 14 24 344+5+647
45 1# 2 O.* ...+70 8#9
78 1+ 2 # # *** 441 12

10) Differences between successive numbers

Pentagonal

5 1 4
12 - 5 as 7

22 - 12 10

number the n1 odd number.

Pattern seems to be a differanoe of 3 between successive differences.

bamammQ

60.1.5
15 6 . 9

28 - 15 gs 13

Pattern seems to be a difference of 4

Exercise

Each number is twice

Yes, since 9
2
4.12

2

between successive differences.

the corresponding number in the first pair.

81- '144.225. 152

The generalization los

If a,b,c is a Pythagorean triple

then ac, bx, aim is also a Pythagorean triple (X is any whole
number)



102 242 100 576 676 262

There are an infinite number

2111.12 Exercise (Possible answer)

2 a 1 I. 1
4 2 + 2
6 - 3+ 3
8 3+ 5
10 3 +7
22 5 +7

11+ 7.# 7

16. 5 +11
18 ill 7 +11
20 7 + 13
22 in 11 + 11
24 as 11 + 13
26 am 13 +13
28 11f17

Yes

Only if one of the primes is 2*

110.22 Exercise (Possible answers)

17 is between 15 and 30
23 is between 20 and 40
79 is between 75 and 150

Definitely*

30 11 4 19
32 0 3 +29
34. 5 +29
36 7 +29

38 7+31
40 114 29
42 13+29

44 7+ 37
46 3.43
48 ;11 5 143

5o 7+43


